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1 Introduction

The decay of the Higgs in two photons is one of the most important discovery channels

at the Large Hadron Collider (LHC), and it is certainly the golden mode at low masses,

where the decay channels into heavy gauge bosons are closed. Detailed studies, including

detector simulations, in the Standard Model (SM) and in its supersymmetric extensions

are available [1]. This mode is also a powerful probe of the electroweak symmetry breaking

sector of the theory, because it is a loop-induced process, therefore it is sensitive to any

particle with a large coupling to the Higgs. In the SM it depends primarily on the couplings

of the Higgs boson with heavy quarks (the top) and gauge bosons (the W ), whose masses

are tightly related to the electroweak scale. In any extension of the SM, particles that do

couple strongly to the Higgs, and therefore play a role in the breaking of the electroweak

symmetry, will also contribute to this loop and modify the SM prediction. For instance,

new particles at the TeV scale are required to soften the divergences that appear in the

corrections to the Higgs mass generated by top and W -Z loops. Many models in fact

predict the existence of partners of the top and W : stops and gauginos in supersymmetry,

heavy W ’s and tops in extra dimensional models and Little Higgs models, and so on.

Studying this channel will therefore give an indirect access to the mechanism underlying

the electroweak symmetry breaking. At the LHC, we also need to take into account the

Higgs production mechanism.

In the SM there are four main production mechanisms: gluon fusion (gg → H), weak

vector boson fusion, weak boson associated production (WH, ZH) and top associated

production (tt̄H). Gluon fusion dominates the inclusive production at LHC energies and

it is roughly an order of magnitude larger than vector boson fusion and other processes.

While some of the production channels may have additional leptons, jets or missing

energy in their final state, in the photon channel it will be difficult, at least at low luminos-

ity, to take advantage of these different signatures. We shall therefore consider mainly the

inclusive H → γγ process. The interest of performing exclusive studies like the production

via vector boson fusion, will be also discussed as it allows to better discriminate the kind

of new physics that can be tested in the H → γγ mode, especially when large integrated

luminosity is available [2]. The main production process gg → H is a loop induced process

like the decay H → γγ, and it is sensitive to the same particles and physics.

In this paper we study the photon channel with the purpose of performing a model

independent analysis, allowing to determine the possibility and the limits for discriminating

various scenarios of new physics. In the following we shall propose a model independent

parametrisation of these loop processes in order to test the possibility of discrimination

of various models of new physics. We shall provide a general and simple formalism to

– 1 –
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easily calculate the contribution of the new heavy states given their spectrum. We will

assume that the new physics only affects those two processes, and corrections to the other

production and decay channels are ignored. In the SM it is well known that the contribution

of heavy particles to H → γγ and H → gg processes does not decouple for particle masses

much larger than the Higgs boson one. The reason is that these SM masses are uniquely

generated by the coupling to the Higgs boson and the mass dependence of their coupling

cancels the mass dependence in the loop integral. In general extensions of the SM this

is not necessarily the case, as the masses may receive other contributions. The effect on

the decay can therefore be sensitive to the mass scale of the new physics. Studying this

channel in detail can give some hints about the model of new physics, and this information

will be complementary to the direct discovery of new states at the LHC. Finally, the

precise determination of the Higgs branching ratios at future Linear Collider will be an

even more powerful discrimination tool, even when the new particles are well beyond the

direct production threshold at the Linear Collider.

In the next section we settle our notation and define our parametrisation of the loop

induced processes H → γγ and H → gg. In the sections 3 and 4 we consider various

scenarios of new physics in 4 and 5 dimensions, in section 5 we discuss numerical results in

various models and how the parametrisation we propose can provide a hint to what kind

of new physics can be deduced from data both at the LHC and at Linear Colliders. Finally

we give our conclusions, and we leave details on the calculation to the appendices.

2 Definitions and notations

In order to establish our notations, we will briefly review the decay of the Higgs in photons

and gluons (the decay width in gluons is directly related to the gluon-fusion production

cross section at hadronic colliders). The decay widths can be written as:

Γγγ =
GFα

2m3
H

128
√

2π3

∣

∣

∣

∣

∣

AW (τW ) +
∑

fermions

Nc,fQ
2
fAF (τf ) +

∑

NP

Nc,NPQ
2
NPANP(τNP)

∣

∣

∣

∣

∣

2

, (2.1)

Γgg =
GFα

2
sm

3
H

16
√

2π3

∣

∣

∣

∣

∣

∣

1

2

∑

quarks

AF (τf ) +
∑

NP

C(rNP)ANP(τNP)

∣

∣

∣

∣

∣

∣

2

, (2.2)

where τx =
m2

H

4m2
x
, Nc,x is the number of colour states in the colour representation (3 for

quarks, 1 for leptons), the constant C(r) is an SU(3) colour factor (defined as Tr[tar t
b
r] =

C(r)δab where tar are the SU(3) generators in the representation r; it is equal to 1/2 for the

quarks and 3 for an adjoint), Qx is the electric charge of the particle in the loop, and the

functions A(τ) depend on the spin and couplings to the Higgs of the particle running in

the loop. Note that GF here is a numerical normalisation of the widths, defined in terms

of the SM Higgs VEV vSM (
√

2GF = 1/v2
SM), and not the physical Fermi constant, which

may receive corrections from the New Physics.
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In the SM, all masses are proportional to the Higgs vacuum expectation value (VEV)

vSM, therefore the couplings to the Higgs can be written as

ySM
hf̄f =

mf

vSM
for fermions , (2.3)

gSM
hφφ = 2

m2
φ

vSM
for bosons . (2.4)

Under this assumption, the amplitudes are given by (F stands for spin-1/2 fermions, W

for vector bosons and S for scalar bosons) [3]

AF (τ) =
2

τ2
(τ + (τ − 1)f(τ)) , (2.5)

AW (τ) = − 1

τ2

(

2τ2 + 3τ + 3(2τ − 1)f(τ)
)

, (2.6)

AS(τ) = − 1

τ2
(τ − f(τ)) ; (2.7)

where

f(τ) =







arcsin2√τ τ ≤ 1

−1
4

[

log 1+
√

1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1

. (2.8)

For our study we are particularly interested in the limit of such functions for large mass of

the particle in the loop with respect to the Higgs mass, τ ≪ 1:

AF (0) =
4

3
, AW (0) = −7 , AS(0) =

1

3
. (2.9)

Note that the particle in the loop does not decouple for large mass because the (SM)

coupling to the Higgs is also proportional to the mass of the particle. As we are interested

in Higgs masses below the W threshold and above the LEP limit (where the γγ signal is

non negligible), the light Higgs approximation is useful for the top and the new physics.

For the W , this approximation is not valid, and the function AW (τW ) ranges from −8 for

mH = 115 GeV to −9.7 for mH = 150 GeV.

However, the mass of new particles in most models is not proportional to the Higgs

VEV v, but receives only a small correction from the electroweak symmetry breaking.

Therefore, the amplitude for new physics is given by the same formulae as above up to

a factor taking into account the different coupling to the Higgs (which is in general not

proportional to the mass). The coupling to the Higgs for a fermion (boson) can be written

in general as

yhf̄f =
∂mf (v)

∂v
, ghφ̄φ =

∂m2
φ(v)

∂v
. (2.10)

Therefore we can write the A function for the new physics contribution for fermions

(bosons) as

AF
NP =

yNP
hf̄f

ySM
hf̄f

AF for fermions , (2.11)

AW,S
NP =

gNP
hφφ

gSM
hφφ

AW,S for bosons ; (2.12)
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which can be written without loss of generality, as

ANP =
vSM

mNP

∂mNP

∂v
AF,W,S . (2.13)

As the mass can be a generic function of v, this formula allows to treat a wide range of

physical situations beyond the Standard Model, as long as the particle mass is at least par-

tially generated by the Higgs VEV (those formulae are valid for a SM Higgs sector; when

the Higgs sector is extended, and for scalars which do mix with the Higgs doublet, more

general formulae apply: see appendix A for details). When the mass of the new physics

is not proportional to the Higgs VEV, ANP will decouple for large masses. Examples of

such cases will be discussed in detail in sections 3, 4. Note also that in general v 6= vSM,

however, as it will be clear in the following, this difference only introduces higher order

corrections in an expansion for large new physics scale.

The new physics can be parametrised by two independent parameters describing the

contribution of the new particles to the two decay widths, however using the actual am-

plitude is not a convenient way of treating the new contributions. Here we propose to

normalise the new contribution to the top one. The main reason is that the top gives the

main contribution to the amplitudes in the SM, and any new physics, which addresses the

problem of the Higgs mass naturalness, will have a tight relation with the top. Moreover,

as it will soon be clear, those two parameters can give some intuitive information about

what kind of new physics runs into the loop. The widths can be rewritten as

Γγγ =
GFα

2m3
H

128
√

2π3

∣

∣

∣

∣

∣

AW (τW ) + 3

(

2

3

)2

At(τt) [1 + κγγ ] + . . .

∣

∣

∣

∣

∣

2

, (2.14)

Γgg =
GFα

2
sm

3
H

16
√

2π3

∣

∣

∣

∣

1

2
At(τt) [1 + κgg] + . . .

∣

∣

∣

∣

2

, (2.15)

where the dots stand for the negligible contribution of the light quarks and leptons, and

the coefficients κ can be written as:

κγγ =
∑

NP

3

4
Nc,NPQ

2
NP

vSM

mNP

∂mNP

∂v

AF,W,S(mNP)

At
, (2.16)

κgg =
∑

NP

2C(rNP)
vSM

mNP

∂mNP

∂v

AF,W,S(mNP)

At
, (2.17)

where the ratio of A functions depends on the spin and masses of the new particles (and

top). In the light Higgs approximation, however, the ratio only depends on the spin of the

new particle:

ANP

At
=











1 for fermions

−21
4 for vectors

1
4 for scalars

(2.18)

An interesting feature of this parameterisation is that a particle with the same quantum

numbers of the top will give κγγ = κgg, and a single particle will give a contribution to
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the two coefficients with the same sign. In this way, if the experimental data allow to

point to a specific quadrant in the κγγ–κgg parameter space, we can have a hint of the

underlying new physics model. This will be illustrated in various examples in the following

sections. Note also that positive κ’s enhance the top contribution, therefore inducing an

enhancement in the gluon channel but a suppression in the photon one, where there is a

numerical cancellation between the dominant W contribution and the top one.

The presence of new physics often modifies the tree level relation between the mass of

the SM particles and the Higgs VEV. This modification of the SM contribution can also

be cast in the κ parameters. For the top it will read:

κγγ(top) = κgg(top) =
vSM

mt

∂mt

∂v
− 1 . (2.19)

For the W :

κγγ(W ) =
3

4

(

vSM

mW

∂mW

∂v
− 1

)

AW (τW )

AF (τtop)
, (2.20)

κgg(W ) = 0 . (2.21)

Here, the difference between the VEVs does introduce relevant corrections and they must

be taken into account.

Note that the modification of the SM couplings will also affect the other production

channels, and the branching ratio in heavy gauge bosons. Those effects will however have

a minor impact on our analysis, and their inclusion will be necessary in a later model-

dependent analysis, after (and if) a model is preferred by data

2.1 Observables at the LHC and linear colliders

The LHC will measure the inclusive γγ Higgs decays and the new physics will modify both

the total production cross section and the branching fraction in photons. For large masses,

close to the W threshold, the decay in two heavy gauge bosons (one is virtual) becomes

relevant and will also yield a relatively early measurement. At large luminosities, one may

also measure the γγ decays in a specific production channel, for instance the vector boson

fusion one that can be isolated using two forward jet tagging: in this case one may probe

directly the branching ratios.

In the Higgs mass range of interest, between 115 and 150 GeV, the main production

channel is gluon fusion with a SM cross section of 40 − 25 pb, followed by vector boson

fusion (5 − 4 pb) and by other channels (WH, ZH, t̄tH) which sum up to 4 − 2 pb. Here

we will assume that the new physics significantly contributes only to the loop in the gluon

fusion channel, while the other cross sections are unaffected. The total production cross

section normalised with the SM one, that we denote as σ̄, can be written as:

σ̄(H) =

(

σNP
gg + σSM

V BF + σSM
V H,t̄tH

σSM
gg + σSM

V BF + σSM
V H,t̄tH

)

≃
(

(1 + κgg)
2σSM

gg + σSM
V BF + σSM

V H,t̄tH

σSM
gg + σSM

V BF + σSM
V H,t̄tH

)

. (2.22)

In the SM the Higgs branching fraction in photons amounts to 2 · 10−3. In presence

of new physics, the branching fraction will also be sensitive to the gluon loop via the

– 5 –
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total width, as the gluon channel is significant: it amounts to 7% of the total for mH =

115 GeV, decreasing to 3% for mH = 150 GeV. Also in this case, we define a branching

ratio normalised to the SM value, BR

BR(H → γγ) =
ΓNP

γγ

ΓSM
γγ

ΓSM
tot

ΓNP
gg + ΓNP

γγ + ΓSM
others

≃
(

1 +
κγγ

9
16AW (τW ) + 1

)2
ΓSM

tot

(1 + κgg)2ΓSM
gg + (ΓSM

tot − ΓSM
gg )

. (2.23)

The branching ratio in heavy vectors will depend on κgg via the total width of the Higgs,

therefore the normalised BR is

BR(H → V V ∗) =
ΓSM

tot

ΓNP
gg + ΓNP

γγ + ΓSM
others

≃ ΓSM
tot

(1 + κgg)2ΓSM
gg + (ΓSM

tot − ΓSM
gg )

. (2.24)

For completeness, the normalised gluon branching fraction can be written as

BR(H → gg) =
ΓNP

gg

ΓSM
gg

ΓSM
tot

ΓNP
gg + ΓNP

γγ + ΓSM
others

≃ (1 + κgg)
2ΓSM

tot

(1 + κgg)2ΓSM
gg + (ΓSM

tot − ΓSM
gg )

. (2.25)

The branching ratios will be measured with an accuracy of few % at a TeV e+e− Linear

Collider.

3 Survey of models of new physics in 4 dimensions

In this section we will summarise the values of the two parameters κγγ and κgg in a

variety of models of new physics. It is not intended to be a complete survey, but rather a

collection of examples of the usefulness of our proposed parametrisation, and of the impact

of new physics on the Higgs search. Here, we will briefly discuss a fourth generation,

supersymmetry, Little Higgs models, a scalar colour octet and the Lee-Wick SM. As the

new particles and mass scales are often heavier than the top, we will use the light Higgs

approximation to derive some simple analytical formulae.

3.1 A 4th generation

As for SM fermions, the masses of a chiral fourth generation are proportional to the Higgs

VEV, and they cannot be arbitrarily large due to the perturbativity of the Yukawa cou-

plings, naively m4 < 4πv ∼ 2TeV. It has been shown that the impact of a relatively light

4th generation on the electroweak precision tests can be minimised if the spectrum follows

a specific pattern [4]: in particular if the splitting between the up and down type quarks

is about 50 GeV (and similarly for the leptons). For masses of a few hundred GeV, this is

not a severe fine tuning. Finally, let us remind that direct bounds on such new particles

are of the order of 190 GeV (for a fourth generation bottom type quark in pp̄ collisions [5])

and 100 GeV for a charged lepton.

– 6 –
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In the light Higgs approximation, the mass dependence disappears: κgg simply counts

the number of new colour triplet quarks, κgg = 2, while κγγ depends on the charges

κγγ =
3

4

[

3

(

2

3

)2

+ 3

(

−1

3

)2

+ 1

]

= 2 . (3.1)

Due to an accident in the charges, therefore, a complete extra generation contributes like

two tops. Another accident is that the width in photons is largely suppressed, while the

gluon one is enhanced by almost the same amount: overall, the inclusive γγ signal will be

similar to the SM one [4] (for a light Higgs).

3.2 Supersymmetry

The supersymmetric contributions to the h→ γγ and h→ gg amplitudes are well studied

in supersymmetric extensions of the Standard Model (see for example [6] for few sample

benchmark scenarios). Here we will focus on the common scenario where the heavier

Higgses are above the WW threshold, so that the γγ decay mode is only relevant for the

light Higgs h. However, the parametrisation we propose in this paper cannot be used in

general for supersymmetric models. In fact, due to the presence of two Higgses which

develop a VEV, the tree level couplings of the SM particles to the Higgs are modified at

order O(1) compared to the SM case. If we define tanβ = vu/vd the ratio of the two VEVs,

and α the mixing angle in the neutral Higgs sector [7], the couplings of W , top (up-type

fermions) and bottom (down-type fermions) compared to the SM values are corrected by

the following factors:

gW+W−h

gSM
= sin(β − α) ,

gt̄th

gSM
=

cosα

sin β
,

gb̄bh

gSM
= − sinα

cos β
. (3.2)

Those corrections can be large, even for heavy susy masses. In the large tanβ case, which

is preferred by the top Yukawa perturbativity and experimental constraints, the bottom

(and tau) Yukawas are enhanced by a large factor ∼ tan β: the Higgs width increases and

the branching ratio in photons can be easily suppressed by orders of magnitudes, making

this channel unobservable. In order to keep the γγ channel alive, one needs to compensate

the large tanβ with a small mixing angle in the Higgs sector: α ∼ ±(π/2 − β). This

requirements means that we are close to the decoupling limit in which the behaviour of the

MSSM Higgs sector is Standard Model like. Indeed a limit mA ≫ mZ (where mA is the

mass of the pseudoscalar Higgs) implies that only the Standard Model like Higgs boson

stays light while all the other scalars are heavy and that α→ (−π/2+β) (for more details

concerning this decoupling limit see [8]).

In order to safely use our formalism, we need to make sure that the corrections to the

bottom Yukawa (and couplings to the W ) are negligible. In the left panel of figure 1 we

plotted the region in the α–β parameter space where both the W and bottom couplings

deviate by less than 5% from the SM value (up to the overall sign). Note that the region

delimitated by the solid (red) lines in the left part of the left panel in figure 1 is precisely the

one around the line of points where α = (−π/2 + β) which corresponds to the decoupling

limit discussed above. We also superimposed the region where corrections to the top

– 7 –
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M

Figure 1. Left panel: in solid red the region where the couplings of the W and bottom are both

within 5% from the SM values (up to the sign), in dashed blue the same for the top couplings.

Right panel: lower bound on the heavy Higgs masses as a function of tanβ requiring deviations of

1% (solid) or 5% (dashed).

Yukawa are smaller than 5%. There is a tiny region where a fine tuning between the two

angles allow for our formalism to be used. Note that a larger mixing angle in the Higgs

sector will soon enhance the bottom Yukawa and kill the γγ signal, so the region is not a

negligible part of the parameter space where the signal is observable. On the right panel

we used a three level relation between the masses in the Higgs sector and α

tan 2α

tan 2β
=
m2

A +m2
Z

m2
A −m2

Z

, (3.3)

where mA is the mass of the pseudoscalar (which also sets the mass scale of the other

heavy Higgses), to set a lower bound on the heavy Higgs masses. Therefore, we expect

that for masses above 1TeV, the corrections to the bottom (and tau) Yukawa can be safely

neglected. In this region, corrections to the W and top couplings are small too.

For the purpose of illustrating our parameterisation, we will focus on some approximate

expressions that arise in a simple scenario: the MSSM golden region [9]. This scenario is

motivated by naturalness in the Higgs mass, minimal fine tuning and precision tests. The

main features are large soft masses for the gauginos and for the light generations, and large

mixing in the stop sector induced by a large soft trilinear term. A general analysis of the

γγ channel can be found in ref. [10]. As a numerical example we will consider a variation

of the benchmark point in ref. [9]: here, tanβ = 10 and all the soft masses except the

stop and Higgs ones are at 1 TeV, µ = 250 GeV and the soft trilinear term for the stops At

is at 1TeV to induce a large mixing in the stop sector and reduce the fine tuning in the

Higgs potential. In this benchmark point, the light Higgs is at 129 GeV. Charginos and

neutralinos (mostly higgsinos) are at 250 GeV (set by µ), while the stops are at 400 and

– 8 –
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700 GeV. All other masses are above a TeV, and we will neglect the contribution of those

sparticles. The only difference is that, in order to avoid the bottom Yukawa problem, we

will push the heavy Higgses above 1 TeV: to do that it is enough to increase the Hd soft

mass above the TeV scale. This will not introduce a severe fine tuning, as the contribution

of this mass to the Higgs VEV is also suppressed by the large tan β [7]. In this scenario,

only the stops contribute to h→ gg and h→ γγ. We neglect the contribution of charginos

because they are mostly higgsinos: the coupling to the Higgs is suppressed by the large

gaugino masses. For the stops, assuming that the soft masses for left and right handed

scalars are equal (∼ 550 GeV at the benchmark point), the contribution to the κ parameters

can be expressed as

κgg(stops) = κγγ(stops) ≃ m2
2 +m2

1

4m2
1m

2
2

m2
t −

(m2
2 −m2

1)
2

16m2
1m

2
2

∼ −0.02 , (3.4)

where m1,2 are the masses of the two eigenstates, and the second term is proportional to

the soft trilinear term: m2
2 −m2

1 ≃ 2|At|mt.

Those formulae are presented here for illustration purpose only, and we will use exact

one loop expressions for the numerical analysis, including the contribution of charginos. A

more general analysis of the region in the MSSM parameter space is beyond the scope of

this paper, and it is postponed to a following publication.

3.3 Little Higgs models

In Little Higgs models [11], the gauge symmetries of the SM are a subgroup of a larger

global symmetry. The breaking of such symmetry at a higher scale f produces light pseudo-

Goldstone bosons, which we want to identify with the Higgs boson. The symmetry structure

removes the divergences from the Higgs mass at one loop: the reason being that one loop

is not sensitive to the explicit breaking of such global symmetry (while higher loops are).

This is however enough to solve the little hierarchy problem, because the scale of new

physics required beyond the Little Higgs mechanism is pushed above 10 TeV. In general

new gauge bosons are introduced in order to eat up unwanted Goldstone bosons, and they

also generate the loops that cancel the divergences from the SM gauge bosons. Similarly,

new fermionic states, cousins of the top, required by the global symmetry, will cancel the

divergences of the top loop.

We will first derive some very general formulae, and then apply them to explicit ex-

amples. In models with only one extra massive gauge boson, W ’, the cancellation works

thanks to the different sign between the couplings of the W and W ’ [12]:

ghW ′W ′ = −ghWW . (3.5)

This is a consequence of the fact that m2
W +m2

W ′ does not depend on the Higgs VEV, but

it is fixed by the scale f at which the global symmetry is broken. The coupling of the W

with the Higgs is also modified

ghWW = gSM
hWW (1 − δW ) =

2m2
W

vSM
(1 − δW ) , (3.6)
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where δW contains corrections in v/f . After recalling that ghWW =
∂m2

W

∂v , the contribution

of the W and W ’ to the κ parameters is (in the light Higgs approximation):

κγγ(W ′) =
63

16

(

mW

mW ′

)2

(1 − δW ) , (3.7)

κγγ(W ) = − 9

16
AW (τW )δW ; (3.8)

while κgg = 0.

The precise value of δW depends on the symmetry structure of the model: in the

Simplest Little Higgs (SLH) model [13], which is based on an SU(3) gauge symmetry,

mW = gf sin
v

2f
, (3.9)

mW ′ = gf cos
v

2f
; (3.10)

so that

δW = 1 − cos
v

2f
= 1 − mW ′

√

m2
W ′ +m2

W

≃ 1

2

(

mW

mW ′

)2

+ . . . (3.11)

At leading order in mW/mW ′ ∼ v/f :

κγγ ≃ 9

16

(

7 − 1

2
AW (τW )

) (

mW

mW ′

)2

∼ (6.2 ÷ 6.7) ·
(

mW

mW ′

)2

(3.12)

where we have varied the Higgs mass between 115 and 150 GeV.

The top sector is more complicated because doubling of fields is usually required in

order to generate a realistic spectrum for the light states. For instance, the simplest way to

introduce the top is to embed the SM left-handed doublet in a triplet of SU(3) that couples

via the two Higgses to two right-handed singlets. In this case we need to double the right-

handed tops in order to give mass both to the top and to its heavy partner T . The symmetry

structure of the model implies that m2
t + m2

T does not depend on the SM Higgs VEV,

therefore the following relation holds between the couplings to the Higgs (ghff =
∂mf

∂v ):

ghTT = −mt

mT
ghtt . (3.13)

As in the gauge sector, the coupling of the SM top also receives deviations from the usual

Yukawa coupling, which we can parametrise as

ghtt =
mt

vSM
(1 − δt) . (3.14)

In terms of this parameterisation, the contribution to κγγ and κgg of the top and T are, in

the light Higgs approximation:

κγγ(top) = κgg(top) = −δt , (3.15)

κγγ(T ) = κgg(T ) = −m2
t

m2
T

(1 − δt) . (3.16)
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In the SLH model, the masses can be written as

m2
t,T = λ2

T f
2

(

1 ∓
√

1 − λ2
t

λ2
T

sin2 v

f

)

, (3.17)

where λt,T are related to the Yukawa couplings to the two Higgses λ1,2:

λT =

√

λ2
1 + λ2

2

2
, λt =

λ1λ2

λT
. (3.18)

Therefore

δt = 1 − m2
T

m2
T −m2

t

m2
W ′ −m2

W

mW ′

√

m2
W ′ +m2

W

≃ −m2
t

m2
T

+
3

2

m2
W

m2
W ′

+ . . . (3.19)

and, at leading order,

κγγ(top+ T ) = κgg(top+ T ) ≃ −3

2

m2
W

m2
W ′

+ . . . (3.20)

Note that at leading order the result is independent on the heavy top mass, but only

depends on the heavy gauge boson W ′.

The total contribution is therefore:

κgg(SLH) ≃ −3

2

m2
W

m2
W ′

∼ −0.002 ·
(

2TeV

mW ′

)2

, (3.21)

κγγ(SLH) ≃
(

141

32
− 9

32
(7 +AW )

)

m2
W

m2
W ′

∼ 0.007 ·
(

2TeV

mW ′

)2

; (3.22)

the Higgs mass dependence in AW is very mild due to the small coefficient. In the numerical

values we have chosen a W ′ mass of 2TeV, which is roughly the one required by electroweak

precision measurements [14]. Note however that the implementation of a T parity [15]

would reduce the bound by almost an order of magnitude.

Another simple model using the Little Higgs mechanism was proposed in ref. [16] and

dubbed Littlest Higgs. Here a global SU(5) is spontaneously broken down to SO(5), and

a subgroup SU(2)2× U(1)2 is gauged. The mechanism acts thanks to the presence of

two copies of the SM gauge group, which are broken to the diagonal by the spontaneous

breaking of SU(5). The Higgs again is a pseudo-Goldstone boson of the global symmetry

breaking. The model, together with a heavy W (WH) and top (T ) also contains a heavy

charged scalar Φ from a triplet of SU(2) that develops a VEV (v′). The model therefore

contains more parameters that the SLH, and its contribution to H → γγ and H → gg has

been computed in ref. [17]. Here we will simply translate those results in our notation:

the contribution of the W and heavy gauge states is (expressed in terms of the masses at
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leading order in the Higgs VEV v):

κγγ(W ) ≃ 9

16

(

m2
W

m2
WH

− 5 − x2

8

v2

f2

)

AW (τW ) , (3.23)

κγγ(WH) ≃ 63

16

m2
W

m2
WH

, (3.24)

κγγ(Φ) ≃ −4 − 3x2

64

v2

f2
; (3.25)

κgg(W,WH ,Φ) = 0 . (3.26)

Here x is proportional to the ratio between the triplet and doublet VEVs (0 ≤ x < 1). Note

that in the limit where the Higgs is much lighter than the W -threshold, the contributions

proportional to the W mass tend to cancel, while the ones proportional to v2 do not. The

top and heavy top contributions are

κγγ(top) = κgg(top) ≃ m2
t

m2
T

− 7 − 4x+ x2

8

v2

f2
, (3.27)

κγγ(T ) = κgg(T ) ≃ −m2
t

m2
T

. (3.28)

Note that as in the SLH, the contribution proportional to the top mass cancels out. There-

fore, the main corrections in this model are proportional to the Higgs VEV and suppressed

by the global symmetry breaking f :

κgg(LH) ≃ −7 − 4x+ x2

8

v2

f2
, (3.29)

κγγ(LH) ≃
(

195

64
+ x− 73

64
x2

)

1

2

v2

f2
+

+
9

16
(7 +AW )

(

m2
W

m2
WH

− 5 − x2

8

v2

f2

)

. (3.30)

Note that the second term in κγγ , which depends on the WH mass, is negligible due to a

small coefficient, therefore the result only depends on f and the triplet VEV x.

The bound from precision measurements on the scale f is around 5 TeV [14], which

correspond roughly to masses of order 2 TeV. To give a numerical example, if x is negligible

κgg(LH) ≃ −7

8

v2

f2
∼ −0.002 ·

(

5TeV

f

)2

, (3.31)

κγγ(LH) ≃ 195

128

v2

f2
∼ 0.0036 ·

(

5TeV

f

)2

. (3.32)

Not that when a T parity is implemented on this model [15], the bound on f is lowered to

500 GeV [18], therefore the contribution to the κ parameters is 100 times bigger.
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3.4 Extended scalar sector: colour octet

The scalar sector is experimentally the least tested part of the Standard Model and may

be more complicated than the minimal content of the SM. It has been shown [19] that in

order to avoid tree level flavour changing neutral currents, the extra scalar should be either

a copy of the SM one (leading to the two Higgs model) or a colour octet with the same

weak quantum numbers as the SM Higgs. Here we will focus on the latter possibility [19].

The most general potential contains 3 terms that are bilinear in both the Higgs H and the

colour octet S:

L = λ1H
†iHiS

†jSj + λ2H
†iHjS

†jSi +
[

λ3H
†iH†jSiSj + h.c.

]

+ . . . (3.33)

where i and j are SU(2) indices and we have left implicit the colour contractions. Note that

imposing custodial symmetry would require λ2 = 2λ3. After the Higgs develops a VEV

〈H〉 = v/
√

2, the spectrum contains one charged and two neutral scalar octets with masses

m2
S± = m2

S + λ1
v2

4
= m2

S (1 +X1) , (3.34)

m2
S0

1,2
= m2

S + (λ1 + λ2 ± 2λ3)
v2

4
= m2

S (1 +X1 +X2 ± 2X3) ; (3.35)

where Xi = λiv
2/4. At loop level, the octet will contribute to the electroweak precision

tests [19]: the corrections can be encoded in the S and ρ parameters, and for small v ≪ mS :

S ≃ 2

3π
X2 , (3.36)

∆ρ ≃ sin2 θW m2
W

96απ3 m2
S

(λ2
2 − 4λ3

3) . (3.37)

The corrections to the ρ parameter can be minimised by imposing (approximate) custodial

symmetry, while S will give a direct constraint on X2. Note that X1 is not strongly con-

strained.

Using the formalism developed in the previous section we can compute the contribution

of the scalar octet to the κ parameters (for v ≪ mS):

κγγ(S) ≃ 3

2

λ1v
2

4m2
S±

∼ 3

2
X1 , (3.38)

κgg(S) ≃ C(8)

2

(

λ1v
2

4m2
S±

+
1

2

(λ1 + λ2 + 2λ3)v
2

4m2
S0

1

+
1

2

(λ1 + λ2 − 2λ3)v
2

4m2
S0

2

)

∼ 3

2
(2X1 +X2) ; (3.39)

where C(8) = 3. As a numerical example, we will use λ1 = 4, λ2 = 1 and mS = 750 GeV.

In this case, X1 ∼ 1/9 and X2 ∼ 1/36, therefore κγγ ∼ 0.17 and κgg ∼ 0.37.

3.5 Lee-Wick Standard Model

Lee and Wick (LW) proposed a modification of the particle propagators in QED by means

of higher derivative terms in order to improve the ultraviolet convergence of the theory and
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make loop corrections finite. This modification of the propagator can also be parametrised

by the presence of a new degree of freedom with large mass and negative kinetic term, so

that the corrected propagator looks like a Pauli-Villars regularised one, where the Pauli-

Villars cutoff scale is replaced by the mass scale of such new degree of freedom. This idea has

recently been extended to the full SM [20]: in this case the loops are not finite, however the

softening of the divergences is enough to address the hierarchy problem in the Higgs mass.

Notwithstanding the theoretical issues arisen by this formulation, the contribution of

the LW degrees of freedom to the H → gg and H → γγ amplitudes has been computed [21]:

here we will sketch the calculation, making use of the general formulae given in section 2,

and give some simple results in the large LW mass approximation.

In this model, to each SM particle, a new LW degree of freedom is associated (2 for each

chiral fermion). For more details of the construction we refer the reader to the refs. [20, 21].

The Higgs VEV will generate a mixing between the standard and LW particles, which has

been studied in detail in [21]: in the following we will review just the results needed to

complete our calculation.

In the Higgs sector, the SM Higgs h and the LW scalar h̃ mix via the Higgs VEV: the

mixing can be described by a symplectic rotation

(

cosh θ sinh θ

sinh θ cosh θ

)

, with tanh 2θ = −2
m2

hm̃
2
h

m4
h + m̃4

h

. (3.40)

A very similar mixing takes place in the gauge sector, between the W and the LW W̃ . The

two mass eigenstates are

m2
W =

1

2

(

M2
2 −

√

M4
2 − g2v2M2

2

)

, (3.41)

m̃2
W =

1

2

(

M2
2 +

√

M4
2 − g2v2M2

2

)

; (3.42)

where M2 is the mass of the LW partner of the SU(2) gauge bosons. Note that there is

no trilinear coupling between the W and the LW Higgs h̃, therefore (using the formulae in

appendix A):

vSM

mW

∂mW

∂v
→ cosh θ

gv

2mW

M2
2

√

M4
2 − g2v2M2

2

=
m̃2

h
√

m4
h + m̃4

h

m̃W

√

m̃2
W +m2

W

m̃2
W −m2

W

≃ 1 +
3

2

m2
W

m̃2
W

. (3.43)

For the W̃ , the coupling to the Higgs is given by −∂m̃2
W

∂v : the minus sign comes from the

negative sign of the kinetic term. This can be proved by an explicit calculation, and it

is true for all the LW fields (for fermions, the coupling to the Higgs is −∂m̃f

∂v ). However,

another minus sign comes from the loops: compared to the SM ones, propagators and

couplings to the gauge bosons (photons and gluons) have a minus sign from the negative
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kinetic term of the LW fields. All in all, a minus sign form the loop compensates the minus

sign in the Higgs coupling and we can safely use the formulae in section 2:

vSM

m̃W

∂m̃W

∂v
→ − cosh θ

gvmW

2m̃2
W

M2
2

√

M4
2 − g2v2M2

2

≃ −m
2
W

m̃2
W

. (3.44)

Putting the two results together, and expanding for m≪ m̃:

κγγ(W + W̃ ) ≃ 27

32

m2
W

m̃2
W

(7 +AW (τW )) − 63

32

m2
W

m̃2
W

. (3.45)

This result is numerically small,1 and the contribution of the W and its LW partner par-

tially cancel each other in the light Higgs limit.

The spectrum also contains a LW charged scalar: in fact the LW Higgs does not develop

a VEV and its charged component h̃+ is not eaten up. The mass of such scalar is simply

given by the Higgs LW mass m̃2
h± = M2

H . Nevertheless, as it happens in the SM with the

Goldstone boson in the Higgs, the Lagrangian contains a coupling between h̃+ and the

Higgs field which can be calculated explicitly and enters the formulae in section 2 as (we

are using here the same notation as in ref.s [20, 21])

vSM

m̃h±

∂m̃h±

∂v
→ − vSM

2m̃2
h±

(cosh θ − sinh θ)
λv

2

= −1

2

√

m̃2
W +m2

W

m̃W

m2
h + m̃2

h
√

m4
h + m̃4

h

m2
hm̃

2
h

m̃2
h±(m2

h + m̃2
h)

≃ −1

2

m2
h

m̃2
h±

, (3.46)

where an extra minus sign comes from the propagators in the loop. Therefore

κγγ(h̃±) ≃ − 3

32

m2
h

m̃2
h±

. (3.47)

This result is also different from the result in ref. [21], where the contribution of the charged

LW Higgs vanishes at this order.2

The top sector is more complicated because for each chiral SM fermion one needs to

add a massive Dirac fermion (with negative kinetic term). The Yukawa couplings, however,

have a simple form: in particular they have the same structure as the SM Yukawas, and

they are functions of the field combination H− H̃ = 1/
√

2(v+h− h̃+ . . . ): the presence of

a LW Higgs will only manifest itself in the fact that the couplings to the standard Higgs are

1The authors of ref. [21] find that the contribution of the W is proportional to the SM amplitude by a fac-

tor s(A+Ã)2 =
m̃2

W
+m2

W

m̃2

W
−m2

W

. In fact, the coupling of the W with the Higgs can be written as cosh θ s(A+Ã)2
g2v

2
;

however gv

2
= mW m̃W√

m̃2

W
+m2

W

6= mW .

2In ref. [21], the authors include the contribution of the charged LW Higgs using the amplitude of the SM

Goldstone boson in the Feynman gauge rescaled by the ratio
m2

W

m̃2

h±

. However the coupling of a Goldstone

boson (which is the same as h̃
+) is not proportional to its mass. See appendix A.3 for more details.
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proportional to cosh θ−sinh θ. The spectrum can be calculated as a series for large LW top

mass Mt (assuming the same mass for the LW partners of the left- and right-handed tops):

mt = Mtǫ
(

1 + ǫ2 + . . .
)

, (3.48)

m̃t1,2 = Mt

(

1 ∓ 1

2
ǫ− 3

8
ǫ2 + . . .

)

; (3.49)

where ǫ = ytv√
2Mt

. The contribution of the top (and partners) is therefore:

κgg(tops) = κγγ(tops) =

(

(cosh θ − sinh θ)
2mW

gv

ǫ

mt

∂mt

∂ǫ
− 1

)

+

+ (cosh θ − sinh θ)

(

ǫ

m̃t1

∂m̃t1

∂ǫ
+

ǫ

m̃t2

∂m̃t2

∂ǫ

)

≃ m2
h

m̃2
h

+
1

2

m2
W

m̃2
W

+ . . . . (3.50)

The ǫ dependence cancels out between the top and LW tops contributions, at the end the

result only depends on the LW Higgs mass.

In total (at this order m̃h± = m̃h):

κgg ≃ m2
h

m̃2
h

+
1

2

m2
W

m̃2
W

∼ 0.015 ·
(

mh

120GeV

1TeV

m̃h

)2

, (3.51)

κγγ ≃ 29

32

m2
h

m̃2
h

− 47

32

m2
W

m̃2
W

+
9

16

m2
W

m̃2
W

(7 +AW (τW )) ∼ 0.017 ·
(

mh

120GeV

1TeV

m̃h

)2

, (3.52)

where in the numerical example we neglected the contribution proportional to the W mass

because of the higher bound on m̃W from electroweak precision tests (m̃W ≫ 3TeV) [22].

4 Survey of models of new physics in extra dimensions

In this section we will focus on models of new physics in one extra dimension, in particular

on the different ways one can employ the Higgs mechanism in this context. Most models

can be divided in 3 main categories: bulk Higgs (BH), brane Higgs (bH) and Gauge Higgs

(GH). In the first case, the Higgs is just a 5D scalar field in the bulk, which picks up a

VEV due to a potential, which may be localised on one brane. In this class of models

we find Universal Extra Dimensions [23–25] and gaugephobic Higgs models [26] in warped

space, as an example. In brane Higgs models, the Higgs is a 4 dimensional field localised

on one brane or end-point of the compact space: the advantage of these models is that

there is no tower of massive scalars and, if the brane where the Higgs is localised plays a

special role like the TeV brane in warped space, the model may address the little hierarchy

problem. A model of this kind was proposed by Randall-Sundrum [27]. Finally, a new

possibility allowed only in extra dimensional models is that the Higgs is part of a gauge

group [28]: in fact the 5th component of a bulk gauge vector is a scalar from the 4D point

of view. The interactions and potential of such particle are however constrained by 5D

Lorentz and gauge invariance: in particular, the Higgs potential (including its mass) is

finite and insensitive to the physics at the cutoff. The limit of this mechanism is that the

model is only valid below an effective scale of few TeV (few Kaluza-Klein modes). In this
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class we can find examples both in flat [29–31] and warped space [32–34]. It is interesting

to note that the sign of the Higgs couplings, which are also related to the cancellation

of the UV sensitivity of the Higgs mass, determines the sign of the contribution to the

loop decays. For instance, in models of Gauge-Higgs unification we expect a reduction of

the gluon coupling due to negative interference, contrary to what happens in models of

Universal Extra dimensions (see for instance [31]).

Extra dimensional models are by nature non normalisable: from the 4D point of view,

they are an effective description of the physics below a cutoff scale where some of the bulk

interactions become strong. Such scale lies typically above a few tens of Kaluza-Klein

(KK) modes. In general, if the symmetries allow so, we can add a tree level higher order

operator which describes the coupling between the Higgs and the massless gauge bosons:

in this way, the decay widths would be non-calculable. Adding such operator is actually

necessary in order to act as a counter-term to the divergences that will arise at loop level.

However, the loops we are interested in are effectively a box diagram if one considers a

VEV insertion in the loop, therefore the one loop calculation turns out to be finite in

all 5 dimension models. The counter-term will only be required at higher loops, and we

will take the finite one loop result as a good approximation. In some cases, like in the

Barbieri-Hall-Nomura model [23], the operator is actually forbidden by an extra symmetry

(supersymmetry in this case). Models of Gauge Higgs are special: the Higgs interactions

are constrained not only by gauge symmetry, but by 5D Lorentz invariance as well. This is

enough to forbid a tree level potential for the Higgs, and also tree level contributions to the

decay widths. Therefore, in this models the Higgs mass is really protected by symmetry

and our calculation can be trusted as UV insensitive [35].

As we want to keep the discussion here as model independent as possible, we will

express the spectra as a function of a dimensionless parameter α that is proportional to

the Higgs VEV. Its precise definition depends on the specific model, and it will be specified

case by case. In general, we will write:

vSM

mNP

∂mNP

∂v
=
vSM

v
· α

mNP

∂mNP

∂α
. (4.1)

The factor vSM/v = 1− δv contains eventual deviations in the numerical value of the Higgs

VEV, and its effect is only relevant for the W and top contributions. We will present

some general results on two different geometries: a flat extra dimension compactified on

an interval (which is equivalent to an orbifold) and a warped extra dimension.

4.1 Gauge bosons in a flat extra dimension

In the flat case, the metric is an extended Minkowski, where the extra coordinate y lies

on an interval [0, πL]. The notation is such that typically the mass of the first Kaluza-

Klein state is mKK = 1/L: this will be our reference mass scale in the following. Note

that this is the only mass scale introduced by the extra space structure. This scale should

be much larger than the W mass due to direct and indirect constraints: the electroweak

precision tests usually push it above ∼ 2 TeV (see for example [29, 36]). It is possible to

relax this bound by adding symmetries: as a typical number in this scenario we will use
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mKK ∼ 500 GeV. This is the case, for example, in Universal Extra dimensions due to a

Kaluza-Klein parity or the BHN model.

4.1.1 Gauge Higgs

One of the peculiarities of this models is the presence of a tower of charged vectors, H+
µ ,

associated with the charged component of the Higgs. They will necessarily mix with the Wµ

via the Higgs VEV. Here we will focus on the simplest example, a SU(3) gauge symmetry

in the bulk, broken to SU(2) × U(1) at both endpoints. The value of the Higgs VEV can

be expressed in terms of a dimensionless parameter α, which is indeed proportional to the

field expectation value. We postpone all details of the calculation of the spectrum and the

precise definition of α in the appendix B.1. The spectrum for the W and its KK tower is

simply given, in terms of α, as

m2
n =

(n+ α)2

L2
, n = 0,±1,±2 . . . (4.2)

where n = 0 corresponds to the W mass:

mW =
α

L
. (4.3)

For the purpose of this section, this can be considered as the definition of α = mWL =

mW /mKK : it is typically a small number because we want the mass of the first KK mode to

be much larger than the W mass in order to avoid direct and indirect bounds. The W mass

is proportional to the Higgs VEV, so that its contribution to the loop is equal to the SM

one and one finds δv(GHflat) = 0. The KK tower contribution to the κ’s is proportional to

∑

n

α

mn

∂mn

∂α
= α

∞
∑

n=1

(

1

n+ α
− 1

n− α

)

= πα cot πα− 1 = −π
2α2

3
+ O(α4) . (4.4)

We can use the definition of α to express the result in terms of the W mass and the mass

of the first KK mode mKK = 1/L:

κγγ(WKK) = −63

16

(

π
mW

mKK
cot

(

π
mW

mKK

)

− 1

)

≃ 63

16

π2

3

m2
W

m2
KK

∼ 0.021 ·
(

2TeV

mKK

)2

; (4.5)

and κgg = 0. Note that the contribution has an opposite sign compared to the W .

Models with a gauge group larger than SU(3) may also contain gauge bosons with differ-

ent boundary conditions on the two endpoints. Those fields consist only of a tower of mas-

sive vector bosons, and they do not give rise to any massless vector of scalar modes. Also,

they cannot mix with the W due to the flatness of the Higgs profile, therefore their presence

will not affect the previous result. If they do couple to the Higgs, their spectrum is given by

m2
n =

(n+ 1/2 + cα)2

L2
, n = 0,±1,±2 . . . (4.6)
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where c is a coefficient determined by gauge group factors. Their contribution to κγγ is

proportional to the sum of all modes. The sum can be rewritten in terms of a sum from

zero to infinity

cα

∞
∑

n=0

(

1

n+ 1/2 + cα
− 1

n+ 1/2 − cα

)

= −πcα tan πcα = −π2c2α2 + O(α4) ; (4.7)

where therefore (QX being the charge of the extra gauge boson)

κγγ(X) ≃ −63

16
π2Q2

Xc
2 m

2
W

m2
KK

∼ −0.063Q2
Xc

2 ·
(

2TeV

mKK

)2

. (4.8)

Note that it has an opposite sign compared to the W tower contribution, and that it tends

to be larger by a factor of 3.

4.1.2 Brane Higgs

Let us first consider a bulk SU(2) × U(1) gauge symmetry, so that there is a single W

tower. The spectrum is determined by the zeros of the equation (for more details, see the

appendix B.2)

f(m,α) = πLm tanπLm − π2α2 = 0 , (4.9)

where α is again a dimensionless quantity proportional to the Higgs VEV. The spectrum

can be computed in an expansion for small α:

m2
WL2 = α2

(

1 − π2

3
α2 + O(α4)

)

, (4.10)

m2
nL

2 = n2 + 2α2 + O(α4) . (4.11)

In first approximation, α ∼ mWL = mW/mKK : however higher order corrections in α will

modify the couplings of the W to the Higgs, and they must be taken into account. The

VEV is modified compared to the SM one, and in appendix B.2 we calculated

δv(bHflat) ≃ π2

6
α2 . (4.12)

Even though the spectrum cannot be calculated analytically, in the appendix we showed

that

1 − α

mW

∂mW

∂α
=

∞
∑

n=1

α

mn

∂mn

∂α
= 1 − 2 sin(2πLmW )

2πLmW + sin(2πLmW )

=
π2

3
m2

WL2 + O(m4
WL4) . (4.13)

The contribution to κ can be therefore written as:

κγγ(W ) = − 9

16
(7 +AW (τW ))

(

1 − 2 sin(2πLmW )

2πLmW + sin(2πLmW )

)

(1 − δv)

− 9

16
δvAW (τW ) . (4.14)
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Expanding for small L:

κγγ(W ) ≃ − 9

32
π2 (7 +AW (τW )) (mWL)2 +

21

32
π2(mWL)2

∼ (0.015 ÷ 0.022) ·
(

2TeV

mKK

)2

(4.15)

where we have varied the H mass from 115 to 150 GeV. Note that the contribution of

the KK tower is the same as in the Gauge Higgs case (up to a sign): however, the total

contribution is suppressed by a partial cancellation between the KK tower and the W .

We can also consider the case of a bulk custodial symmetry, which will contain a

WR gauge boson which mixes with the W . In order to make it massive, one can impose

Dirichlet boundary conditions on y = 0, the opposite brane to where the Higgs is localised.

The spectrum is very similar, the only difference is to replace L→ 2L in all the equations.

However, this effect is compensated by the fact that the lightest KK mode from the WR

tower has mass 1/(2L) instead of 1/L, therefore the result is the same as a function of the

lowest KK mass.

4.1.3 Bulk Higgs

When the Higgs is in the bulk, it will generate a bulk mass for the gauge bosons. The VEV

therefore will shift the spectrum

m2
n =

n2 + α2

L2
. (4.16)

In this case, the W mass (n = 0) is proportional to the Higgs VEV (α), so that no correc-

tions will come from the ordinary W (δv(BHflat) = 0). We postpone details of the precise

definition of α in the appendix B.1. The contribution of the tower is proportional to the sum

∞
∑

n=1

m2
WL2

n2 +m2
WL2

=
πmWL coth πmWL− 1

2
=
π2

6
m2

WL2 + O(m4
W ) . (4.17)

The contribution to κγγ is therefore:

κγγ(W ) ≃ −63

16

π2

6
m2

WL2 ∼ −0.01

(

2TeV

mKK

)2

. (4.18)

Note that the sign is different from the previous two cases, so that this contribution tends

to sum up with the ordinary W one.

4.2 Gauge bosons in a warped extra dimension

A warped extra dimension is characterised by a non-trivial metric that, in the covariant

coordinates that we will be using in this paper, can be written as

ds2 =

(

R

z

)2

(ηµνdx
µdxν − dz2) , (4.19)
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where R is the curvature of the space. Moving along the extra coordinate z, the unit length

in 4D is rescaled, so that the natural energy scale of the model depends on the position along

the warped extra coordinate. Now, z spans over an interval, but the two endpoints have a

very different meaning: the brane at small z = ǫ is called the UltraViolet (UV) brane, and

its typical scale represents the ultimate UV cutoff of the theory, 1/ǫ = Λ. One can imagine

that this scale is very large, say the Planck scale MP l. On the other hand, at large z = R′

one places an InfraRed (IR) brane: its energy scale is directly related to the mass of the

KK modes, so that mKK ∼ 1/R′ of order TeV. The proportionality factor depends on the

particle we are considering: for a gauge boson like the W , the first KK mode is at 2.4mKK .

The large splitting between the UV and IR scale, beyond explaining the weakness of

gravitational interactions, also introduces a gap between theW mass and the KK mass scale

mKK ≃ mW

√

log ΛR′ ∼ 6 mW (4.20)

for Λ = MP l and R′ = 1 TeV−1. This feature makes those models much more attractive

than the flat cases, because the Higgs VEV can be closer to the IR scale. Finally, indirect

bounds will usually require mKK ≥ 1 TeV, which corresponds to a W ′ above 2 TeV [32, 37],

similar to the flat case.

Here we will show some features of those models, and use a numerical evaluation

of the κ’s in generic models. We focus on Gauge Higgs and IR brane Higgs models, as

generic bulk Higgs models are much more complicated to deal with, both analytically and

numerically [26].

4.2.1 Gauge Higgs

The spectrum of gauge bosons is determined by a complicated equation involving Bessel

functions of order 1 and 0 (more details in the appendix B.1). If we expand for large UV

scale, we can get a very good approximate spectrum which depends only logarithmically

on Λ. For the W , assuming that it is much lighter than the KK mass, we can expand for

small mWR′ ≪ 1:

m2
WR′2 ≃ 2

log ΛR′ sin2 πα ≃ 2π2

log ΛR′α
2 , (4.21)

where we have neglected higher order corrections in the log. The first KK mode will be

given by the zeros of Bessel functions and one finds mW ′ ∼ 2.4/R′. Note also that this

expression fixes α as a function of the KK scale R′. Contrary to the flat case, the W mass

is not linear in the Higgs VEV, so that there will be corrections coming from the deviations

from the SM coupling to the Higgs. We found (see appendix B.1):

δv(GHwarped) ≃ 1 − sinπα

πα
, (4.22)

and the total correction is therefore proportional to

(1 − δv)
α

mW

∂mW

∂α
− 1 ≃ cos πα − 1 ≃ −m

2
WR′2

4
log ΛR′ ∼ −0.055

(

1/R′

1TeV

)2

. (4.23)
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Note that one can use the same trick that we used in the flat brane Higgs (see appendix

B.2) to calculate this quantity exactly: however, for our purpose, this approximate result

is more than sufficient, and we can check that sub-leading terms will be suppressed by a

log compared to this result:

α

mW

∂mW

∂α
− 1 = −m

2
WR′2

6
log ΛR′

(

1 − 9

4

1

log ΛR′ +
3

2

1

log2 ΛR′

)

+ O(m4
WR′4) . (4.24)

The contribution to κγγ is

κγγ(W ) ∼ 9

16
(−0.055)AW (τW ) ∼ (0.25 ÷ 0.30) ·

(

1/R′

1TeV

)2

(4.25)

where mH = 115 ÷ 150 GeV.

One can also numerically compute the KK tower contribution to the κ’s and find (for

a W tower):

κγγ(WKK) ∼ 0.009 ·
(

1TeV

1/R′

)2

(4.26)

for Λ = MP l. This contribution is much smaller that the contribution of the W .

4.2.2 Brane Higgs

Expanding for large Λ and small mWR′ ≪ 1, the mass of the W is (for more details, see

the appendix B.2):

m2
WR′2 =

α2

(1 + α2/2) log ΛR′ + . . . (4.27)

and

δv(bHwarped) ≃ α2

4
≃ m2

WR′2

4
log ΛR′ . (4.28)

Similarly to the Gauge Higgs case, the coupling of the W to the Higgs will receive correc-

tions, and the contribution to the κ will be proportional to

α

mW

∂mW

∂α
− 1 = −m

2
WR′2

2
log ΛR′

(

1 − 2
1

log ΛR′ +
1

log2 ΛR′

)

+ O(m4
WR′4) . (4.29)

We also numerically computed the contribution of the KK tower, and, as in the flat case,

the following relation holds:

∞
∑

n=1

α

mn

∂mn

∂α
= 1 − α

mW

∂mW

∂α
. (4.30)

Numerically:

κγγ(W ) ∼ − 9

16
(0.12) (7 +AW (τW )) − 9

16
(0.06)AW (τW )

∼ (0.34 ÷ 0.51) ·
(

1/R′

1TeV

)2

(4.31)

where mH = 115 ÷ 150 GeV.
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4.3 Bulk fermions in a flat extra dimension

Bulk fermions are easier to analyse because the basic structure is common to all kind of

Higgs models: we always need two bulk fermions, a doublet and a singlet of SU(2), that

couple via the Higgs (either in the bulk or on the brane). In Gauge Higgs, those fields are

in the same representation of the extended bulk gauge symmetry, while in other models

they can be independent fields. Both in Gauge Higgs and in the brane Higgs case, the

Higgs appears in the boundary conditions, which have the same form in the two cases: the

reason is that one can use a gauge transformation to remove the Gauge Higgs VEV from

the bulk equations of motion, as explained in more detail in the appendix C. The only

difference is that the boundary conditions depend differently on the Higgs VEV. In the

following we will use the notation of the Gauge Higgs models, where the Higgs VEV enters

via trigonometric functions of a dimensionless parameter β. Note that the β parameter is

different in general from the one for the gauge bosons α, due to either gauge group factors

or Yukawa couplings. In Gauge Higgs, both β and α are proportional to the Higgs VEV.

In the brane Higgs case, we can also define a fictitious β parameter that is related to the

actual brane Higgs VEV V (see the appendix C for more details) as

tan πβ = yV , (4.32)

where y is an effective Yukawa coupling. The spectrum will be the same in the two cases,

as a function of β, however the couplings to the Higgs are different. The results in the

brane Higgs case are equal to the Gauge Higgs case, up to a correction factor

V

β

∂β

∂V
=

sinπβ cos πβ

πβ
. (4.33)

This factor takes into account the non linear relation between β and the brane Higgs VEV

V . Like in the gauge case, we will use eq. (4.1) (with α replaced by β), and take into

account the contribution of δv on the top one. For simplicity, we will leave this effect

implicit through this section.

In the Bulk Higgs case, the spectrum is different: the calculation is more complicated

in the case of a generic Higgs profile, and we will only study the case of a constant Higgs

VEV in a flat extra dimension, which is relevant for the UED model.

4.3.1 Bulk fermions

The first spectrum we will consider is the following:

m2
n = M2 +

(n + β)2

L2
, n = 0,±1,±2 . . . (4.34)

This spectrum can arise in many scenarios: in Gauge Higgs models, one can generate

the masses of light fermions by using two copies of bulk fermions with opposite boundary

conditions, and connected by a bulk mass term M [38]. The light fermions are localised

degrees of freedom that can mix with the massive bulk fields via localised mass terms: the

electroweak symmetry breaking is mediated to the localised fields by the massive ones, like
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in the Froggatt-Nielsen model. In this case, the smallness of the light mass can be achieved

either by a small mixing, or by a large bulk mass M .

For M = 0

m2
n =

(n+ β)2

L2
, n = 0,±1,±2 . . . (4.35)

and we have a light mode with mass

mf =
β

L
. (4.36)

In Gauge Higgs models, this can be identified with the top, whose mass is of order the

electroweak scale: a mtop 6= mW can be obtain by using a large representation for the field

containing the top [29], or by an explicit breaking of Lorentz invariance [30]. As we will

shortly see, warped geometry automatically solves this problem. In brane Higgs models, all

fermion masses can be generated in this way, because the relation between β and the Higgs

VEV depends on Yukawa couplings and each field will feel a different effective β parameter.

Finally, this spectrum will be generated also by a Bulk Higgs with a flat profile, where β

is proportional to the Higgs VEV. For more detail about the spectra, see the appendix C.

The κ’s will be proportional to the sum

∑

n

β

mn

∂mn

∂β
=

β2

(ML)2 + β2
+ β

∞
∑

n=1

n+ β

(ML)2 + (n+ β)2
− n− β

(ML)2 + (n− β)2
=

=
πβ sin(2πβ)

cosh(2πML) − cos(2πβ)
, (4.37)

with the proportionality coefficient determined by the quantum numbers of the 5D field

(charge and colour), and a correction factor in the brane Higgs case. For large ML,

this contribution is exponentially suppressed: the mass of the localised fermions is also

suppressed by exp(−πML), therefore we find

κ ∼
m2

f

m2
KK

. (4.38)

In this class of models, one can safely neglect the contribution of the light fermion towers.

For the top in Gauge Higgs, or in the case of brane Higgs and Bulk Higgs models

(M = 0), β = mfL and

∑

n

β

mn

∂mn

∂β
= πβ cot πβ . (4.39)

The contribution of the top tower is:

κγγ = κgg =

(

π
mt

mKK
cot

(

π
mt

mKK

)

− 1

)

≃ −π
2

3

m2
t

m2
KK

∼ −0.025

(

2TeV

mKK

)2

, (4.40)

where we have subtracted the top contribution. In the brane Higgs case:

κγγ = κgg =

(

(1 − δv) cos2

(

π
mt

mKK

)

− 1

)

≃ −π2 m2
t

m2
KK

− π2

6

m2
W

m2
KK

∼ −0.076

(

2TeV

mKK

)2

. (4.41)
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The contribution from other light fermion towers are negligible, as they will be proportional

to the light fermion mass squared.

For completeness, let us also report the contribution from a tower of states with twisted

boundary conditions, which may be present in models with large bulk representation and

have a spectrum

m2
n = M2 +

(n+ 1/2 + β)2

L2
, n = 0,±1,±2 . . . (4.42)

In this case:

∑

n

β

mn

∂mn

∂β
= β

∞
∑

n=0

n+ 1/2 + β

(ML)2 + (n+ 1/2 + β)2
− n+ 1/2 − β

(ML)2 + (n+ 1/2 − β)2
=

= − πβ sin(2πβ)

cosh(2πML) + cos(2πβ)
. (4.43)

This contribution is also suppressed for large bulk masses. In the M → 0 limit we get:

∑

n

β

mn

∂mn

∂β
= −πβ tan πβ ≃ −π2β2 . (4.44)

The contribution to the κ’s is

κgg(twisted) = −
{

πβ tan πβ

(1 − δv) sin2 πβ

}

∼ −0.075
m2

f

m2
t

(

2TeV

mKK

)2

, (4.45)

κγγ(twisted) =
9

4
Q2

f κgg , (4.46)

for a colour-triplet with mfL = β. The two results in the brackets correspond to GH/BH

(up) and bH (down), and they give the same contribution in the small β limit.

4.3.2 Bulk fermion in UED models

In this case the spectrum is (similarly to the gauge case)

m2
n =

n2 + β2

L2
, n = 0, 1, 2 . . . (4.47)

with β proportional to the Higgs VEV via the bulk Yukawa coupling: for any SM fermion,

β = mfL, therefore only the top quark is relevant. The contribution to the amplitude is

the same as for the gauge bosons, so that the top KK tower gives

κγγ(top) = κgg(top) ≃
π2

6
m2

tL
2 ∼ 0.01

(

2TeV

mKK

)2

. (4.48)

Note that this contribution has an opposite sign compared to the GH/bH cases, and, in

κγγ , it tends to cancel the contribution of the W tower.
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4.3.3 Odd bulk masses: fermions in models of flavour

Lorentz invariance in 5D allows to write down a mass term for a single 5D fermion M̃ :

this mass term is however forbidden in orbifold models, because the two components of the

5D fermions have opposite parities (unless the mass has an odd profile). A model defined

on an interval is less constrained as it allows for the presence of such masses. Those odd

masses have a very important phenomenological feature [39]: the zero mode of the 5D

fermion is chiral, therefore M̃ cannot give it a mass! Its effect is to exponentially localise

the zero mode, and therefore modify the overlap with other fields, in particular with the

Higgs (either bulk or localised). This feature can be used in a variety of models to generate

the hierarchies in the fermion masses using order 1 Yukawas and bulk masses for all fermion

fields! This is an alternative mechanism to generate light fermions in GH models, where

the Yukawa couplings are equal due to gauge invariance, but it can also be used in bH and

BH models. There is however a crucial difference between the two: in GH models the bulk

masses are the same for the two SM fields that couple to the Higgs, because they come

from the same bulk multiplet, while in bH/BH models they can be different. As we will

see, this has dramatic consequences for the Higgs phenomenology.

Here we will focus on the GH and bH cases: the Higgs VEV enters via a dimensionless

parameter β, and we will define

mf = β/L . (4.49)

As a reference, we will assume mf = mtop, but this may not be the case in all models. The

equation determining the spectrum is more complicated than in the previous case, therefore

we will limit ourselves to an expansion for small β. In the GH case, the odd masses are

the same for the two bulk fields, M̃ . Expanding for mL≪ M̃L, we can calculate the mass

of the light mode, which would be identified with the SM fermion:

m2
l =

2M̃2 sin2 πβ

cosh(2πM̃L) − cos(2πβ)
≃ 2M̃2L2π2

sinh2 πM̃L
m2

f . (4.50)

It is clear from this formula that the light mode mass is suppressed by exp(−πM̃L) com-

pared to the Higgs VEV β. Therefore, a M̃L ∼ O(1) can explain the lightness of the

fermions in the SM. The spectrum of the heavy modes, mn > M̃ , is more complicated:

m2
nL

2 = M̃2L2 + n2 ± 2n2

√

n2 + M̃2L2
β +

n4 + 3M̃2L2n2

(n2 + M̃2L2)2
β2 + O(β3) . (4.51)

The couplings of each mode to the Higgs are large, however like in the previous case the

modes have a different sign in the coupling. The sum, therefore, gives at leading order in β:

∑

n

β

mn

∂mn

∂β
= −2β2

∞
∑

n=1

n4 − 3M̃2L2n2

(n2 + M̃2L2)2

= − π2β2

sinh2 πM̃L

(

πM̃L

tanhπM̃L
− 1

)

≃ − m2
l

2M̃2

(

πM̃L

tanhπM̃L
− 1

)

. (4.52)

– 26 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
4

We find again that the tower of light modes does not contribute significantly to the widths:

the only contribution will come from the top tower (M̃ → 0) which is approximate by the

result in the previous subsection. Note again that this exponential suppression comes from

a non trivial cancellation between modes.

In models with brane Yukawa couplings, the fields containing the SU(2) doublet and

singlet are not necessarily the same, so they can have different bulk masses, M̃L and M̃R.

In this case, the spectra of the two bulk fermions are different, the two KK towers are

not degenerate in the β → 0 limit and there are no cancellations between modes. As

we will see, the spectra are degenerate if M̃R = −M̃L, however, even in this case, the

cancellation between modes that we observe in the GH case does not occur. In conclusion,

in models of this kind, the contribution of the KK tower of light modes can be large, as it is

proportional to the 5D Yukawa coupling and not to the effective light-mode Yukawa (light

fermion mass). As an example, we can study the latter case M̃L = −M̃R = M̃ , where some

simple analytical results can be obtained. The zero mode mass is, at leading order,

ml ≃ 4M̃e−2πM̃L sinπβ , (4.53)

suppressed by exp(−2πM̃L). As before, we can compute the approximate KK spectrum

for small β

m2
nL

2 = M̃2L2 + n2 ± 2n2

√

n2 + M̃2L2
β

+
(1 − 2πM̃L)n4 + (3 − 2πM̃L)M̃2L2n2

(n2 + M̃2L2)2
β2 + O(β3) , (4.54)

which differs to the M̃L = M̃R case only at order β2, and the sum over the massive modes

(the SM fermion is not included)

∑

n

β

mn

∂mn

∂β
= −2β2

∞
∑

n=1

(1 + 2πM̃L)n4 − (3 − 2πM̃L)M̃2L2n2

(n2 + M̃2L2)2
=

− π2β2

4 sinh3 πM̃L

(

cosh(3πM̃L) + (4πM̃L− 1) cosh(πM̃L)

−4(πM̃L+ 1) sinh(πM̃L)

)

≃ −π2β2 ∼ −0.075

(

2TeV

mKK

)2( mf

mtop

)2

. (4.55)

The result is not very sensitive to the precise value of the bulk masses, even in the case

of M̃L 6= M̃R (we checked this numerically). Moreover, corrections from the non-linear

relation between β and the Higgs VEV (the same multiplicative factor as in the previous

section) will only affect this result at higher orders in β, while the light mode is negligible.

The contribution of the top tower will be the same as in the massless case and, at leading

order, it also gives −π2β2. For a model with this flavour structure, contributions of the

light fermion and top towers are:

κγγ = κgg ≃ 6(−π2β2) − π2α2

6
∼ −0.45

(

2TeV

mKK

)2

, (4.56)
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where the factor of 6 takes into account 3 complete SM generations, and we assumed that

all the Yukawa couplings are of the same order (as the top one).

4.4 Fermions in a warped extra dimension

The localisation mechanism in warped extra dimension is much more effective than in the

flat case: the reason is that the localisation is exponential with the large number ΛR′. The

geometry itself generates two hierarchical mass scales: the UV cutoff Λ on the UV brane

and the KK scale 1/R′ on the IR brane. Here we will use the usual notation to call c the odd

bulk mass in units of the curvature, c = M̃R. A left-handed (right-handed) zero mode is

localised on the UV brane for c > 1/2 (c < −1/2) and IR brane for c < 1/2 (c > −1/2) [40].

GH models are characterised by the same odd mass c for the two fields that couple to

the Higgs, because they are part of the same bulk multiplet. Like in the gauge boson case,

we can expand for large UV cutoff, however in the fermionic case the expansion is more

complicate and depends on the value of the bulk mass c. For −1/2 < c < 1/2 (when both

zero modes are localised on the IR brane), the mass of the light mode is

mfR
′ ≃

√

1 − 4c2 πβ

(

1 − 3 + 4c2

9 − 4c2
π2β2 + O(β4)

)

. (4.57)

The mass is not suppressed compared to the Higgs VEV β; notice also that the log sup-

pression between the W mass and β is not present here, therefore one can fit the top mass

without using a large representation (therefore, β = α is acceptable)! The mass does not

depend linearly on β, thus the coupling with the Higgs receives corrections compared to the

SM value, that will contribute to the κ’s. For a fermion with the same quantum numbers

of the top (and in the light-Higgs approximation):

κγγ(t) = κgg(t) = (1 − δv)
β

mf

∂mf

∂β
− 1 ≃ −32

3

c2

(9 − 4c2)(1 − 4c2)
m2

fR
′ − δv . (4.58)

We also calculated this contribution exactly, and verified that this approximation is good

for |c| < 0.4 at a few percent level. The κ’s vanish for c→ 0: in fact, in this limit the Bessel

functions reduce to sines and cosines and we recover the flat case result where the light

fermion mass is linear in the Higgs VEV. The coupling of the Higgs to the KK modes is also

large. In summary, for −1/2 < c < 1/2, the light mass is un-suppressed compared to the

Higgs VEV and the contribution of the tower to the κ’s is sizable. Numerically we found

κγγ(tKK) = κgg(tKK) ∼ −1

3
m2

fR
′2 (4.59)

for a fermion tower with the same quantum numbers of the top. This contribution will

sum with the one coming from the top; notice that it is very similar to the flat case result

(factor of 1/3). For the top quark in GH (with 1/R = 1 TeV, and β = α fixed by the W

mass), we need c ∼ 0.43: numerically

κγγ(top) = κgg(top) ∼ (−0.029 − 0.018) + (−0.011) = −0.06 ·
(

1TeV

1/R

)2

. (4.60)
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Figure 2. Contribution to κ from a bulk fermion in GHU as a function of the bulk mass c,

1/R = 1TeV, and mH = 130GeV. The dotted line represents the contribution of the light mode

(deviation from the SM one), the dashed line is for the KK tower and the thick one corresponds

to the sum of both.

Note finally that this result can also be generalised to the brane-Higgs case with equal

masses, taking into account the correction mentioned in the previous section, which is the

same independently on the geometry.

For c > 1/2 and c < −1/2 the two zero modes are localised on different endpoints, and

the light mass is suppressed:

mfR
′ ≃

(

1

ΛR′

)|c|− 1
2 √

4c2 − 1 sinπβ . (4.61)

In this case the coupling of the KK modes to the Higgs is also suppressed by:

(

1

2ΛR′

)2|c|−1

∼
m2

f

m2
KK

. (4.62)

The contribution of a light fermion KK tower is negligible,3 however, contrary to the flat

case, there is no cancellation involved and each KK mode coupling is suppressed by the light

fermion mass. In figure 2 we computed numerically the contribution of a bulk fermion as a

function of the bulk mass c (β = α fits the W mass and 1/R′ = 1 TeV). The contribution

of the light fermion is the deviation from a SM fermion of the same mass: it vanishes for

c = 0, grows towards c = 1/2 reaching the value calculated for the W , and then goes down

due to the decrease in the SM amplitude for a light fermion. The contribution of the KK

modes, on the other hand, decreases for large c. The total contribution is almost constant

for c < 1/2, then reaches a peak when the light fermion is at the Higgs decay threshold (in

the plot, mH = 130 GeV), and then goes rapidly to zero.

It is straightforward to understand the suppression if we analyse in detail the structure

of the wave functions: let us consider first the doublet, which contains a left-handed zero

3This result agrees with ref. [34].
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mode. The wave functions, after applying the UV boundary conditions, are

χL = ALz
5/2
[

J−c+ 1
2
(p/Λ)Jc+ 1

2
(pz) + Jc− 1

2
(p/Λ)J−c− 1

2
(pz)

]

(4.63)

ψL = ALz
5/2
[

J−c+ 1
2
(p/Λ)Jc− 1

2
(pz) − Jc− 1

2
(p/Λ)J−c+ 1

2
(pz)

]

(4.64)

where χ (ψ) is the left-handed (right-handed) wave function component. The expansion

for small p/Λ depends on the value of c (Jν(x) ∼ xν for small x):

χL ≃
{

Jc+ 1
2
(pz) for c > 1/2

J−c− 1
2
(pz) for c < 1/2

ψL ≃
{

Jc− 1
2
(pz) for c > 1/2

J−c+ 1
2
(pz) for c < 1/2

(4.65)

plus corrections suppressed by
( p

Λ

)|2c−1|
. For the singlet field, that contains the right-

handed zero mode

χR ≃
{

Jc+ 1
2
(pz) for c > −1/2

J−c− 1
2
(pz) for c < −1/2

ψR ≃
{

Jc− 1
2
(pz) for c > −1/2

J−c+ 1
2
(pz) for c < −1/2

(4.66)

plus corrections suppressed by
( p

Λ

)|2c+1|
. The IR boundary conditions are:

ψL cos πβ + iψR sinπβ = 0 , (4.67)

χR cos πβ + iχL sinπβ = 0 . (4.68)

It is clear that if the wave functions are proportional to each other, ψL ∝ ψR and χL ∝ χR,

the β dependence drops out from the equations: this is indeed the case at leading order

for c > 1/2 and c < −1/2. In this case the Higgs VEV will affect the spectrum only via a

suppressed contribution.

We can apply the same discussion to the generic brane localised Higgs: in this case,

there are two different bulk masses cL and cR. Unless cL = cR, the wave functions are

different and cannot be proportional to each other, therefore the coupling of the Higgs will

be sizable even though the zero mode mass is suppressed due to the localisation of its wave

functions. As in the flat case, the towers of light modes will give a large contribution to

the κ’s. It can be calculated numerically and we found that for cL > 1/2 and cR < −1/2

it can be approximated by

κγγ = κgg ≃ −π2β2 ∼ −0.12 ·
(

1TeV

1/R′

)2

(4.69)

for a fermion tower with the same quantum numbers of the top, Λ = MP l and using β = α

that fits the W mass. Like in the flat case, the contribution of the KK towers of the light

fermions is very large. To conclude, we can quote the number for a realistic quark and

lepton spectrum. We use ctop
L = 0.37, ctop

R = 0, cbot
R = −0.55:

κγγ(fermions) ≃ κgg(fermions) ∼ −0.71 ·
(

1TeV

1/R′

)2

. (4.70)
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5 Numerical results

In this section we present exact numerical results for the models we considered in the

previous two sections: in all cases, the analytic formulae are a very good approximation.

We considered the following models:

- [�] a fourth generation (the result is independent on the masses and Yukawa cou-

plings);

- [♣] supersymmetry in the MSSM golden region: we only included the contribution of

the stops with the spectrum given by the benchmark point in [9]. In this case the re-

sult is very sensitive to the parameters in the superpotential and in the susy breaking

terms, therefore the general MSSM will cover a region of the parameter space;

- [N] Simplest Little Higgs, the result scales with the W ′ mass (in the plots, mW ′ =

2TeV);

- [∗] Littlest Higgs, the result scales with the symmetry breaking scale f and has a

mild dependence on the triplet VEV x (we set x = 0): for a model with T-parity we

use f = 500 GeV, without T parity f = 5 TeV;

- [�] colour octet model, the result depends on 2 free parameters: for illustration we

use in the plots X1 = 1/9 and X2 = 1/36 (see section 3.4);

- [◮] Lee-Wick Standard Model, the result scales with the LW Higgs mass: in the plots

we set it to 1TeV for illustration;

- [⊗] Universal Extra Dimension model [25], where only the top and W resonances

contribute and the result scales with the size of the extra dimension: here we set

mKK = 500 GeV close to the experimental bound;

- [⋆] the model of Gauge Higgs unification in flat space in ref. [30], where only the W

and top towers contribute (β = mtL), with the first W resonance at 2 TeV;

- [•] the Minimal Composite Higgs [32] (Gauge Higgs unification in warped space) with

the IR brane at 1/R′ = 1TeV: only W and top towers contribute significantly. The

point only depends on the overall scale of the KK masses, as the other parameters

are fixed by the W and top masses;

- [H] a flat (W ′ at 2 TeV) and [♠] warped (1/R′ at 1TeV) version of brane Higgs models,

in both cases the hierarchy in the fermionic spectrum is explained by the localisation,

and all light fermion towers contribute. Notwithstanding the many parameters in the

fermion sector, the result only depends on the overall scale of the KK masses.

In the numerical results, the value of the mass of the new particles is at or around the

lower bound given by precision electroweak tests; for larger masses, the contribution scales

like the inverse squared mass (with the exception of the fourth generation). Note that in
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Figure 3. κγγ and κgg at the LHC for a light Higgs (mH = 120GeV). The two solid lines correspond

to the SM values of the inclusive γγ channel (A), and the vector boson fusion production channel

(B). On the left panel, the dashed lines are spaced by 0.5, while the dotted ones by 0.1. On the

right, we zoomed near the SM point.

many cases, the result only depends on one mass scale, and is insensitive to other free pa-

rameters present in the model: for example, in extra dimensional models with flavour, the

final result does not depend on the precise localisation pattern of the bulk fields. There-

fore, changing the parameters of the model can only move the point towards the origin by

increasing such mass scale (except for supersymmetry and the colour octet model, where

a wide region of the parameter space may be covered). The models are displayed in fig-

ures 3 and 4: different classes of models point in different quadrants of the parameter

space. Therefore, if we could measure experimentally the two parameters, depending on

the accuracy of the measurements, we may be able to distinguish between models and have

an hint of what kind of mechanism lies behind the breaking of the electroweak symmetry.

The direct discovery of the new particles would then be a confirmation of the model. The

complementarity between the two measurements is crucial, because this indirect probe is

sensitive to the quantum numbers and couplings to the Higgs of the new particles. This

information is hardly accessible at the LHC, except in some special cases: most of the

models analysed here predict new states above 1TeV, at which mass scale one can only

probe states produced by strong interactions, and their couplings to the Higgs and weak

bosons will generally not play any significant role. It is crucial to understand the reach

and discrimination power of the LHC in this parameter space.

The LHC will surely be able to measure the inclusive cross section σ(pp → H → γγ),

as this is one of the golden channels for the discovery of a light Higgs. For an integrated

luminosity of 10 fb−1 we can expect a 10% accuracy with respect to the Standard Model

one [41]. We plotted the inclusive cross section normalised by the SM value in the κγγ–κgg
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Figure 4. κγγ and κgg at the LHC for a Higgs near the WW threshold (mH = 150GeV). The

two solid lines correspond to the SM values of the inclusive γγ channel (A), and the inclusive V ∗V

channel (V = W,Z) (B). On the left panel, the dashed lines are spaced by 0.5, while the dotted

ones by 0.1. On the right, we zoomed near the SM point.

parameter space for a light Higgs (mH = 120 GeV) in figure 3 and for a Higgs near the

V V -threshold (mH = 150 GeV) in figure 4: many models lie very far from such line, and a

10% measurement would allow to probe new physics masses up to few TeV in some cases.

Note that many of the models we studied predict a reduction of the inclusive signal: the

measurement of an enhancement at the LHC may be a sign of unexpected new physics.

Note also that some very different models can give the same prediction, like the fourth

generation case where a suppression in the γγ decay is accidentally compensated by an

enhancement in the gluon fusion cross section. Therefore, we need to measure another

observable at the LHC in order to distinguish such models. For the light Higgs case, in

figure 3 we plotted the vector boson fusion channel, which is sensitive to the γγ branching

fraction directly. This channel is orthogonal to the inclusive one, and therefore offers

the best discrimination power. Experimentally, this channel is very promising even at

low luminosity, for the observation of the Higgs Boson in the H → γγ decay mode [42].

However a detailed study of this channel, as required for the precise determination of the κ

parameters demands a high luminosity [43]. A precise study requires a detailed simulation

and will not be given here. For a heavier Higgs, in figure 4, the decay in massive gauge

bosonsH → V ∗V (with one virtual) becomes relevant and offers another discovery channel.

This channel, sensitive to the total cross section, will allow for a discrimination for Higgs

masses near the WW threshold.

The Linear Collider will have a much better chance to discriminate between models

than the LHC. In fact, an experiment at a linear collider will be able to measure directly
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Figure 5. κγγ and κgg at the ILC (mH = 120GeV). The two solid lines correspond to the SM

values of the γγ (A) and gluon (B) branching ratios. On the left panel, the dashed lines are spaced

by 0.5, while the dotted ones by 0.1. On the right, we zoomed near the SM point.

the branching fractions into gluons and photons. After 100 fb−1 of data, in the photon

channel an accuracy of 5–7 % is expected (reduced to 2–3 % with the γγ collider option),

while the gluon channel offers a 2 % accuracy (assuming SM values) [44]. We compared

the models with the ILC measurements in figure 5.

6 Conclusions

The decay in a pair of photons is the golden channel for the discovery of the Higgs boson at

the LHC for an intermediate mass, below the WW threshold, where the dominant decay

mode would be b̄b. This decay occurs via a loop diagram, where the heaviest particles in

the SM (W and top) contribute the most. Furthermore, the production cross section at

the LHC is dominated by a similar loop diagram that mediates the coupling of the Higgs

to a pair of gluons. This situation offers a precious handle on new physics: in fact, new

particles that may be present at the TeV scale will also contribute to those loops, therefore

modifying the SM predictions for the Higgs production and decay rates.

One of the main motivations to expect new physics at the TeV scale is the naturalness

of the Higgs mass (electroweak scale): the new particles, partners of the gauge bosons

and of the top, will cancel or soften the divergences in the loop corrections to the Higgs

mass. If this is the case, the new particles will have a significant coupling to the Higgs

and therefore contribute significantly to the loop couplings of the Higgs. The LHC will be

able to discover such new particles, with masses up to few TeV for particles with strong

interactions and 1TeV for weakly interacting ones. However, little information on the

couplings will be directly accessible: the discovery of new states will not tell us if they play

any role in the Higgs physics. Measuring deviations in the H → γγ and H → gg couplings
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at later times will give us an important hint to understand the nature of the new states

and of the underlying model of electroweak symmetry breaking.

In this paper, we studied the contribution of new physics to the H → γγ and H → gg

decay widths (the latter is proportional to the production cross section). We propose a

convenient parameterisation of the new contributions, by introducing two independent pa-

rameters κγγ and κgg. Such a simple parameterisation neglects contributions to the tree

level processes, such as production channels other than gluon fusion and decays, that are

generically present in models of new physics. This parameterisation is especially useful in

models where such effects are small. They could be taken into account in a later model-

dependent analysis once a specific model or class of models is preferred by data. On more

general grounds, more parameters can be introduced and the analysis extended in a similar

fashion: for instance, in supersymmetry, a parameter describing the variation of the total

width of the Higgs due to the bottom Yukawa coupling can be used. We avoided doing

so as many models do have small corrections and in order to keep the parameterisation as

simple as possible.

Simple new physics scenarios give rise to simple correlations in this parameter space:

for instance, a top partner will have κγγ = κgg, while a single new particle will generate

same-sign κ’s. In order to illustrate the power of a model independent measurement at

the LHC (and at future Linear Colliders) we compiled a necessarily incomplete survey

of models of new physics both in 4 and 5 dimensions. Our results show that there are

classes of models pointing in different quadrants of the parameter space, and that the

deviations from the SM predictions can be as large as 50%. Moreover, in most cases those

results do not depend on the details of the model and they are sensitive to just one mass

scale of the new physics. Therefore, a cross section measurement at the LHC will allow

to discriminate models even with new particle masses at the TeV scale. At the Linear

Collider, the few percent level measurement of the Higgs branching ratios will allow an

even better discrimination. Note also that most of the models in our survey populate the

κγγ < κgg region, where we generically expect a suppression of the inclusive cross section.

In this parameterisation it would be easy to discover hints of unconventional or unexpected

new physics, independently on direct and/or indirect signals in other channels.
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A Higgs couplings in extended Higgs sectors

A.1 Multiple Higgs

The Higgs sector may contain multiple scalar fields which develop a VEV, like for instance

in supersymmetry where two Higgs doublets are required in order to allow up and down

type Yukawa interactions. Let us imagine that there are n such Higgs multiplets φi, such
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that

φi =
1√
2

(vi + cih+ . . . ) , (A.1)

where h is the lightest mass eigenstate (that we would identify with the SM Higgs), and

dots represent the other (heavier) scalar mass eigenstates. The VEVs are all non zero

vi 6= 0. In this case, in the formulae in section 2, one needs to replace:

vSM

m

∂m

∂v
→ vSM

m

∑

i

∂m

∂vi
ci . (A.2)

For example, in the case of supersymmetry, there are two Higgs doublets, Hu,d with

Hu = 1/
√

2(vu+h cosα+sinαH) and Hd = 1/
√

2(vd−h sinα+cosαH), and v2
SM = v2

u+v2
d

(tan β = vu/vd). The W mass is given by m2
W = g2/4(v2

u + v2
d), so that:

vSM

mW

∂mW

∂v
→ vSM

mW

(

mW

vSM
sinβ cosα− mW

vSM
cosβ sinα

)

= sin(β − α) . (A.3)

For the top, mt = yvu:

vSM

mt

∂mt

∂v
→ vSM

mt
y cosα =

cosα

sin β
. (A.4)

A.2 Higgs mixing

Another interesting case is when the Higgs mixes with additional scalars that do not develop

a VEV. This situation may be realised in multiple Higgs models, or in the Lee-Wick SM.

We will call Sj those inert scalars, which contain the light Higgs field h:

Sj = sjh+ . . . (A.5)

As before, we are assuming that the other mass eigenstates are heavier than the h, which we

want to identify with the SM Higgs. The scalars Sj may couple to a particle p with coupling

gSj
Sj p̄p , (A.6)

which will contribute to the coupling of p to the Higgs h via the mixing. In this case, one

can use the formulae in section 2 with

vSM

m

∂m

∂v
→ vSM

m





∑

i

∂m

∂vi
ci +

∑

j

gSj
sj



 . (A.7)

A.3 Charged Higgs couplings

Another situation where the coupling to the Higgs does not come via the v-dependence of

the mass, is when the particle in question does couple with the Higgs potential. In fact, the

Higgs potential implicitly contains the VEV, and this fact may lead to cancellations in the

particle mass. One may calculate the mass of the particle as a function of the Higgs field

VEV 〈H〉 and v (which are numerically equal), derive in 〈H〉 and then impose 〈H〉 = v.
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In most cases it is easier to compute the coupling directly from the Higgs potential: here

we will summarise three cases that are useful for the calculations in this paper.

The most trivial example is the charged Goldstone boson in the SM, which is eaten

by the W in the Unitary gauge. In Feynman gauge, the charged component of the Higgs

doublet remains in the spectrum and its mass is mφ± = mW . This may lead to the wrong

conclusion that its couplings to the Higgs are the same as the W . The Higgs potential can

be written as

V (H) =
λ

4

(

H†H − v2

2

)2

; (A.8)

after expanding the Higgs field as H =

(

φ+

v+h+iφ√
2

)

, it does not generate any mass for the

Goldstone bosons φ, because of a cancellation between the mass term −λv2/4 and a con-

tribution from the quartic coupling (the mass is given by the gauge fixing term). However,

the quartic coupling does generate a trilinear coupling with the Higgs h:

λv

2
φ+φ−h =

m2
h

v
φ+φ−h . (A.9)

The coupling to the Higgs is therefore proportional to the Higgs mass. The amplitude

generated by the Goldstone boson can be computed starting from the amplitude of a stan-

dard scalar

Aφ±(τW ) =
v

2m2
W

m2
h

v
AS(τW ) = 2τWAS(τW ) , (A.10)

where τW =
m2

h

4m2
W

.

A similar situation happens in the Lee-Wick SM: together with the standard Higgs

field H, there exist a LW scalar H̃ with negative kinetic term. The potential is:

VLW (H, H̃) = V (H − H̃) −M2
HH̃

†H̃ . (A.11)

Only the standard Higgs develops a VEV, while the LW Higgs does not thanks to its

large LW mass MH . The charged component of the Higgs is eaten by the massive W ; the

charged component of the LW field h̃+ is a physical degree of freedom with mass given

simply by the LW mass: the v dependence cancels out like for the Goldstone bosons.

Nevertheless, a trilinear coupling h̃+h̃−h is present with coefficient proportional to λv/2

(the proportionality coefficient depends on the mixing in the neutral sector, and it is

discussed in section 3). The amplitude for the LW field can be written as:

Ah̃±(τ̃h±) =
vSM

2m̃2
h±

λv

2
AS(τ̃h) =

λvvSM

2m2
h

2τ̃hAS(τ̃h) ; (A.12)

where τ̃h =
m2

h

4m̃2
h±

. This formula is different from the one used in ref. [21].
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Finally, let us discuss the case of the charged Higgs in the MSSM: the model con-

tains two Higgs doublets Hu,d with opposite hypercharge to generate up- and down-type

Yukawas. The potential contains two quartic couplings [7]:

VMSSM(Hu,Hd) =
g2 + g′2

8

(

|Hu|2 − |Hd|2
)2

+
g2

2

∣

∣

∣
HuH

†
d

∣

∣

∣

2
+ . . .

=
g2 + g′2

8

(

|H0
u|2 − |H0

d |2 +H−
u H

+
u −H+

d H
−
d

)2

+
g2

2

∣

∣H+
u (H0

d )∗ +H0
uH

+
d

∣

∣

2
+ . . . (A.13)

where the dots stand for quadratic terms. The two neutral components develop a VEV:√
2 〈H0

u〉 = vu = vSM sin β and
√

2 〈H0
d 〉 = vd = vSM cosβ. However, only one com-

bination actually acquires a VEV: we can define H1 = sinβ Hu − cos β H†
d and H2 =

cos β Hu + sinβ H†
d such that

√
2 〈H1〉 = vSM and

√
2 〈H2〉 = 0. The charged component of

H1 is eaten by the W , while the charged component of H2 is the physical charged Higgs:

H+
u = cos β H+ and H+

d = sin β H+. Plugging those solutions in the potential, and expand-

ing around the VEV
√

2 〈H0
u〉 = vu +cosαh+sinαH and

√
2 〈H0

d 〉 = vd− sinαh+cosαH,

we find that

m2
H± = m2

A +m2
W , (A.14)

gH+H−h =
2m2

W

vSM
sin(β − α) +

m2
Z

vSM
cos(2β) sin(β + α) , (A.15)

where mA is a mass term independent on the VEVs. The coupling to the light Higgs has

a term proportional to the W mass square, coming from the second term in the potential

(this is what we would obtain from the mass formula), and a term proportional to the Z

mass square, from the first quartic term in the potential: the latter cancels out in the mass

formula but does contribute to the Higgs couplings.

B Gauge bosons in 5D

In this appendix, we propose a more detailed description of the models that we consider

in section 4, we sketch how to extract the spectra of masses for Gauge bosons for different

choices of geometry and compactification of the fifth dimension. We first derive general

results in a generic metric with the extra coordinate y ǫ [y1, y2] and

ds2 = w(y)2(dxµdx
µ − dy2) , (B.1)

and then we discuss the limits of flat (w = 1, y1 = 0 and y2 = πL) and warped AdS

(w = R/y, y1 = R and y2 = R′) metrics. The action of a pure gauge theory in one extra

dimension, after fixing the Rξ gauge, is given by:

S =

∫

d4x

∫ y2

y1

dy w

{

−1

4
F a

µνF
µνa − 1

2
F a

µ5F
µ5a − 1

2ξ

[

∂µA
µa − ξ

1

w
∂5 (wAa

5)

]2
}

, (B.2)
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where F a
MN = ∂MA

a
N − ∂NA

a
M + g5f

abcAb
MA

c
N and g5 is the 5D gauge coupling. In the

Unitary gauge (ξ → ∞), the massive modes of the fifth component A5 are removed and

they become the longitudinal polarisation of the massive KK vectors. In the following, we

will discuss two models: one where the Higgs is part of the gauge field, namely a zero mode

of the A5, and another where the Higgs is a brane localised field.

B.1 Gauge Higgs unification models

A zero mode for the A5 component of the gauge field is a physical scalar in the spectrum

because it is not eaten up in the Unitary gauge. However, it is a special scalar because its

potential is constrained by Lorentz and gauge invariance: in 5D no potential is allowed at

tree level, therefore it is generated at loop level and it is finite. This property makes the A5

an ideal candidate to play the role of the Higgs boson. In order to obtain a zero mode, we

need to enlarge the SM gauge group such that a doublet of SU(2) is part of the gauge fields,

and break the gauge directions of this doublet on both end points by imposing Dirichlet

boundary conditions on the vectors (and therefore Neumann boundary conditions on the

A5 component).

For simplicity, we work on the minimal model where the gauge symmetry is enlarged

to SU(3), broken to the electroweak SU(2) × U(1) at the boundaries. The bulk fields can

be written as:

Aµ =







W
(3)
µ +1/

√
3B

(8)
µ W +

µ D+
µ

W −
µ −W

(3)
µ +1/

√
3B

(8)
µ D0

µ

D−
µ D0†

µ 2/
√

3B
(8)
µ






and A5 =







0 0 H+

0 0 H0

H− H0† 0






(B.3)

where W and B are towers with a zero mode, D are massive gauge bosons and H is the

Higgs field (only the zero mode). We assume that the radiative potential will generate a

VEV for the Higgs

〈H0〉 =
V√
2

1

w(y)
, (B.4)

where V is a constant and the y dependence is encoded in the metric factor w. The presence

of this VEV will affect the bulk equation of motions for all fields: however, being H part of

gauge fields, we can use an SU(3) gauge transformation to remove the VEV from the bulk

equation of motions, and cast it into the boundary conditions [45]. For the gauge bosons,

we can define:

ÃM = Ω(y)AMΩ†(y) − i

g5
Ω(y)∂MΩ†(y)

so that 〈Ã5〉 = Ω(y)〈A5〉Ω†(y) − i

g5
Ω(y)∂yΩ

†(y) = 0 . (B.5)

The gauge transformation that does this job can be written as:

Ω(y) = exp

[

ig5v/2

∫ y

y1

dy′
1

w(y′)
λ7

]

, (B.6)
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where λ7 is the generator of SU(3) aligned with H0. Note that we fixed the gauge trans-

formation such that it only affects one brane: in fact Ω(y1) = 1, and

Ω(y2) = exp [iπαλ7] =







1 0 0

0 cosπα i sinπα

0 i sinπα cos πα






, (B.7)

where

α =
g5V

2

∫ y2

y1

dy

π

1

w(y)
(B.8)

is a dimensionless parameter proportional to the Higgs VEV V . The equations of motion of

the new fields do not depend on the Higgs VEV, however the boundary conditions on one

end will be affected. For example, for the charged gauge bosons, the gauge transformation

will mix W+ and D+, which have respectively Neumann and Dirichlet boundary conditions

on both endpoints: in the new basis

{

D+
µ (y1) = D̃+

µ (y1) = 0

∂5W
+
µ (y1) = ∂5W̃

+
µ (y1) = 0

and

{

D+
µ (y2) = cos πα D̃+

µ +i sinπα D̃+
µ = 0

∂5W
+
µ (y2) = cos πα∂5W̃

+
µ +i sinπα∂5D̃

+
µ = 0

Eq. (B.8) can be used to calculate δv , however we need to first identify the 4-dimensional

VEV v. The physical Higgs field has, with a good approximation, the same profile as the 5D

VEV V , therefore the couplings of the Higgs can be calculated by replacing V → V +h/N ,

where N is the normalisation of the Higgs wave function:

N2 =

∫ y2

y1

dy w(y) · 1

w(y)2
, (B.9)

and v = V N . Therefore, α can be written in terms of the 4-dimensional VEV v as:

α =
g5vN

2π
=
g4v

2π
N
√
V , where V =

∫ y2

y1

dy w(y) (B.10)

is the volume of the extra dimension, and g4 is the 4-dimensional gauge coupling (equal to

the SM one up to electroweak precision corrections). Therefore:

vSM

v
= 1 − δv =

g4vSM

2πα
N
√
V =

mWN
√
V

πα
. (B.11)

The specific form of the spectrum depends on the metric: in the flat case

α =
g5V

2

∫ πL

0

dy

π
=
g5L

2
V , (B.12)

and
{

W̃ (x, y)

D̃(x, y)

}

=
∑

n

{

(An cosmny +Bn sinmny)

(Cn cosmny +Dn sinmny)

}

Wn(x) . (B.13)
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Applying the boundary conditions to such wave functions, we obtain that the spectrum is

determined by the solutions of the following equation:

sinπ (mnL± α) = 0 . (B.14)

Given mWL = α, and N2 = V = πL:

δv = 1 − πmWL

πα
= 0 . (B.15)

The warped case is more complicated because the solutions of the equations of motion

are Bessel functions of the first and second kind of order 1:

α =
g5V

2

∫ R′

1/Λ

dy

π

y

R
=
g5R

′2

4πR
V

(

1 − 1

(ΛR′)2

)

, (B.16)

and
{

W̃ (x, y)

D̃(x, y)

}

=
∑

n

{

y(AnJ1(mny) +BnY1(mny))

y(CnJ1(mny) +DnY1(mny))

}

Wn(x) . (B.17)

Finally

1 − δv =
mWR′

πα

√

log ΛR′

2
≃ sinπα

πα
, (B.18)

where we used that N ≃ R′/
√

2R, V = R log ΛR′ and

mWR′ ≃
√

2

log λR′ sinπα . (B.19)

B.2 Brane Higgs models

In these models, the Higgs boson is a 4D field which couples with the 5D gauge bulk field

only on a boundary, so that the Higgs VEV only enters in the boundary conditions. We will

first focus on the case where the bulk gauge symmetry is the same as in the SM, without

extra fields that mix with the W : the action in the bulk is the same as in (B.2) and the

5D field can be KK decomposed as we have done before. The boundary conditions on the

two endpoints can be written as (here we assume the Higgs localised on y2, but the results

do not depend on this choice)

{

∂5W
+
µ (y1) = 0

∂5W
+
µ (y2) − g2

5v2

4w(y2) W
+
µ (y2) = 0

(B.20)

where v is the Higgs VEV and g5 the 5D gauge coupling. If we decompose the 5D fields

as usual

W+(y, x) =
∑

n

fn(mny) Wn(x)+ , (B.21)
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the second boundary condition determines the spectrum as the solutions of the equation

mn
f ′(mny2)

f(mny2)
− g2

5v
2

4w(y2)
= 0 . (B.22)

The precise form of the function f depends on the geometry after imposing the boundary

condition on the other endpoint. The Higgs VEV can be written in terms of the SM one as:

vSM

v
= 1 − δv =

g5vSM

2
√

w(y2)

√

f(mW y2)

mW f ′(mW y2)
=

√

mWV
w(y2)

√

f(mW y2)

f ′(mW y2)
. (B.23)

In the flat case

f(mny) = cos(mny) ⇒ πLmn tanπLmn − π2α2 = 0 , (B.24)

where we have defined for convenience

α =

√

L

π

g5V

2
. (B.25)

Eq. (B.23) gives

δv = 1 −
√

mWπL cot(mWπL) ≃ π2

6
(mWL)2 . (B.26)

In the warped case

f(mny) = y(Y0(mnR)J1(mny) − J0(mnR)Y1(mny)) , (B.27)

and

α =
g5vR

′

2
√
R
. (B.28)

Expanding eq. (B.23) we obtain

δv ≃ α2

4
. (B.29)

Note finally that the simple form of eq. (B.22) allows us to calculate the couplings of

the n-th mode to the Higgs as a function of the mass, even though the mass cannot be

explicitly calculated: in fact, taking the total derivative with respect to V and eliminating

V by using eq. (B.22), we obtain

v

mn

∂mn

∂v
=

2f ′

f

f ′

f +mny2

(

f ′′

f −
(

f ′

f

)2
) . (B.30)

By studying this expression numerically or in an expansion for small α, we found that the

sum rule
∑

n

v

mn

∂mn

∂v
= 1 , (B.31)

where we are summing over all the mass eigenstates, is respected both in the flat and

warped case.
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C Fermionic fields

Here we are considering the minimal 5D bulk action for a fermionic field Ψ:

S =

∫

d4x

∫ y2

y1

dy w(y)4
[

i

2

(

ΨΓM∂MΨ − ∂MΨΓMΨ
)

− w(y)M̃ΨΨ

]

(C.1)

where ΓM with M = 1 . . . 5 are the five Dirac 4 × 4 matrices for 5D representation of

the Clifford Algebra and M̃ is the odd bulk mass of the 5D fermion. We remind that in

5D, the irreducible Lorentz representation for Ψ is a Dirac spinor, which is not chiral. For

convenience we can use the Weyl spinor notation Ψ =

(

χ

ψ̄

)

; thus, the equations of motion

for the fermionic bulk fields are given by:






−iσ̄µ∂µχ− ∂5ψ̄ +
(

wM̃ − 2w′

w

)

ψ̄ = 0

−iσµ∂µψ̄ + ∂5χ+
(

wM̃ + 2w′

w

)

χ = 0
(C.2)

The next step consists in using the KK decomposition of the 5D spinors to extract the

evolution along the fifth dimension. The components χ and ψ are defined by:

χ(x, y) =
∑

n

gn(y)χn(x) and ψ̄(x, y) =
∑

n

fn(y)ψ̄n(x) , (C.3)

where χn(x) and ψ̄n(x) are the two 4D-components of the Dirac field with the mass mn

and satisfying usual 4D Dirac equations
{

−iσ̄µ∂µχ
(n) +mn

¯ψ(n) = 0

−iσµ∂µ
¯ψ(n) +mnχ

(n) = 0
(C.4)

The wave functions therefore will satisfy the following equations

flat case: =⇒
{

g′n + M̃gn −mnfn = 0

f ′n − M̃fn +mngn = 0
(C.5)

AdS case: =⇒
{

g′n + c−2
y gn −mnfn = 0

f ′n − c+2
y fn +mngn = 0

(C.6)

where we have defined c = M̃R in the warped case. The solutions of those equations in the

flat case will be combinations of sin(
√

m2
n − M̃2y) and cos(

√

m2
n − M̃2y) (which become

hyperbolic for the massless/light mode). In the warped case we have Bessel functions

J1/2±c(mny) and J−1/2±c(mny) [46].

Finally we have to consider models with chiral SM fermions. This is achieved by taking

boundary conditions for the Dirac fields which allow light chiral zero modes:

Left-handed

fermion
→ ψ |y1,y2= 0

∥

∥

∥

∥

∥

Right-handed

fermion
→ χ |y1,y2= 0 (C.7)

To complete the description of fermions and to relate it to SM phenomenology, we need

to introduce two bulk fields, a singlet ΨR with a right-handed zero mode and a doublet of

SU(2) ΨL with a left-handed zero mode, and their couplings with the Higgs boson. From

here, we need to specify some properties of the 5D models.
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C.1 Gauge Higgs unification models

In this case, the singlet ΨR and the doublet ΨL are embedded in the same bulk field, a

representation of the larger bulk gauge symmetry. Consequently the odd bulk mass M̃

is the same for the doublet and the singlet components. The interaction with the Higgs

boson appears in the covariant derivative of Ψ in the kinetic term. This additional term

in the action is given by −ig5Ψ̄Γ5A5Ψ in the bulk: the bulk Yukawa coupling is therefore

proportional to the gauge coupling g5 and the proportionality factor depends on the specific

representation of Ψ. This term will modify the bulk equations of motion: however, as in

the gauge boson case, we can use a gauge transformation to remove the Higgs VEV, and

recast its effects on one of the boundary conditions.

Here we will focus on the SU(3) case described in the text for simplicity. The gauge

transformed fields on the y2 brane are

Ψ̃(y2) = Ωf (y2)Ψ(y2) where Ωf (y2) = exp
[

i παλ̃7

]

, (C.8)

where λ̃7 is the SU(3) generator in the representation of Ψ. The matrix Ωf will mix the

singlet and the component of the doublet which picks up a mass (for simplicity we will

denote it with ΨL). The mixing angle however, is not α in general: in fact it will depend

on the representation of the bulk field, and the proportionality factor can be calculated

by explicitly computing the generator λ̃7 for the bulk fermion representation. In general,

we will define a new parameter β to describe the mixing. Note that in the case of a bulk

fundamental, Ω is the same as the one used for the gauge bosons in the previous section,

therefore β(3) = α. The new boundary conditions for the transformed fields are
{

ψL(y2) = cos πβ ψ̃L(y2) − i sinπβ ψ̃R(y2) = 0

χR(y2) = cos πβ χ̃R(y2) − i sin πβ χ̃L(y2) = 0
(C.9)

This boundary conditions will determine the spectrum: for instance, the spectrum mn in

the flat case is given by the solutions of

− cos 2πL

√

−M̃2 +m2
n + cos 2πβ + 2

M̃2

m2
n

sin2 πβ = 0 . (C.10)

C.2 Brane Yukawas

Fermionic masses can also be generated by Yukawa couplings localised on an endpoint of

the extra dimension: this is possible both in the bulk Higgs model and in the localised Higgs

case. Like in the Gauge Higgs case, the Higgs VEV only enters in the boundary conditions.

However, boundary conditions for fermions are more tricky than for bosons, due to the fact

that the equations of motion are first order differential equations: therefore how the VEV

enters the boundary conditions depends crucially on the localisation mechanism for the

Higgs field or for the Yukawa couplings (see ref. [46]). Here we will consider the simplest

possibility: that the boundary conditions are linear in the Higgs VEV:
{

ψL − yvLψR = 0

χR + yvLχL = 0
(C.11)
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Those boundary conditions are the same as in the gauge Higgs case if we identify tan πβ =

yvL (and removing the i with a phase redefinition of the fields). The only difference is that

β is not proportional to the Higgs VEV, therefore additional corrections to the couplings

will arise. Another novelty is that the singlet and doublet fields are part of different bulk

fields, therefore they can have different bulk masses M̃L and M̃R.
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